Головной мозг человека. Мозг - Финансовый словарь смарт-лаб Всё про головной мозг человека

Мозг — это самый загадочный и таинственный орган человека. Парадоксально, но наши представления о его работе и то, как она самом деле происходит — вещи диаметрально противоположные. Следующие эксперименты и гипотезы приоткроют завесу над некоторыми тайнами функционирования этого «оплота мышления», взять который ученым не удалось по сей день.

1. Усталость — пик креативности

Работа биологических часов — внутренней системы организма, определяющей ритм его жизнедеятельности — имеет непосредственное влияние на повседневную жизнь человека и его продуктивность в целом. Если вы «жаворонок», то разумней всего выполнять сложную аналитическую работу, требующую серьезных умственных затрат, утром или до полудня. Для полуночников, иными словами — «сов» — это вторая половина дня, плавно переходящая в ночь.

С другой стороны, за более креативную работу, требующую активации правого полушария, ученые советуют приниматься, когда организм чувствует физическую и умственную истощенность, а мозгу уже просто не под силу разобраться в доказательстве тернарной проблемы Гольдбаха. Звучит безумно, но если копнуть немного глубже, то рациональное зерно в данной гипотезе найти все же можно. Так или иначе, это объясняет, почему моменты типа «Эврика!» происходят во время езды в общественном транспорте после длинного рабочего дня или, если верить истории, в ванной. :)

При недостатке сил и энергии фильтровать поток информации, анализировать статистические данные, находить и, что самое главное, запоминать причинно-следственные связи крайне тяжело. Когда речь заходит о творчестве, то перечисленные негативные моменты приобретают положительный окрас, так как этот вид умственной работы предполагает генерирование новых идей и нерациональное мышление. Другими словами, уставшая нервная система при работе над творческими проектами более эффективна.

В одной из статей научно-популярного американского журнала Scientific American говорится о том, почему отвлечение играет важную роль в процессе креативного мышления:

«Способность к отвлечению очень часто является источником нестандартных решений и оригинальных мыслей. В эти моменты человек менее сконцентрирован и может воспринимать более широкий спектр информации. Такая «открытость» позволяет оценивать альтернативные варианты решения проблем под новым углом, способствует принятию и созданию совершенно новых свежих идей».

2. Влияние стресса на размеры мозга

Стресс — это один из наиболее сильных факторов, влияющих на нормальное функционирование головного мозга человека. Недавно ученые Йельского университета (Yale University) доказали, что частые переживания и депрессии в буквальном смысле уменьшают размеры центральной части нервной системы организма.

Головной мозг человека не может синхронизировать процессы принятия решений в отношении двух отдельно взятых проблем. Пытаясь сделать два действия в одно и то же время, мы всего лишь истощаем свои когнитивные способности, переключаясь с одной проблемы на другую.

В случае, если человек сконцентрирован на чем-то одном, основную роль играет префронтальная кора, контролирующая все возбуждающие и угнетающие импульсы.

«Передняя (Anterior part) префронтальная кора головного мозга отвечает за формирование целей и намерений. К примеру, желание “Я хочу съесть тот кусочек торта” в виде возбуждающего импульса проходит по нейронной сети, достигает задней префронтальной коры, и вы уже наслаждаетесь лакомством».

4. Короткий сон повышает умственную активность

Прекрасно известно, какое влияние оказывает здоровый сон. Вопрос в том, какое воздействие имеет дремота? Как выяснилось, короткие «отключки» на протяжении дня не менее положительно сказываются на умственной деятельности.

Улучшение памяти

После окончания эксперимента по запоминанию 40 иллюстрированных карточек одна группа участников на протяжении 40 минут спала, тогда как вторая бодрствовала. В результате последующего тестирования выяснилось, что участники, которым выпал шанс немного вздремнуть, запомнили карточки гораздо лучше:

«В это сложно поверить, но выспавшейся группе удалось возобновить в памяти 85% карточек, тогда как остальные вспомнили всего 55%».

Очевидно, что короткий сон помогает нашему центральному компьютеру «кристаллизировать» воспоминания:

«Исследование показывает, что едва сформировавшиеся в гиппокампе воспоминания очень хрупки и могут быть легко стерты из памяти, особенно если потребуется место для новой информации. Короткий сон, как оказалось, “проталкивает” недавно усвоенные данные к новой коре (неокортекс), месту длительного хранения воспоминаний, защищая их таким образом от уничтожения».

Улучшение процесса обучения

В процессе исследования, проведенного профессорами Калифорнийского университета (The University of California), перед группой студентов было поставлено довольно сложное задание, требующее изучения большого количества новой информации. Через два часа после начала эксперимента половина волонтеров, точно так же, как и в случае с карточками, на протяжении короткого периода времени спала.

В конце дня выспавшиеся участники не только качественнее выполнили задание и лучше усвоили материал, но их «вечерняя» продуктивность значительно превышала показатели, полученные перед началом исследования.

Что происходит во время сна?

Несколько недавних исследований показали, что во время сна активность правого полушария значительно повышается, тогда как левое ведет себя предельно тихо. :)

Такое поведение ему совершенно не свойственно, так как у 95% населения планеты левое полушарие является доминирующим. Андрей Медведев, автор данного исследования, сделал весьма забавное сравнение:

«Пока мы спим, правое полушарие беспрестанно хлопочет по дому».

5. Зрение — главный «козырь» сенсорной системы

Несмотря на то, что зрение является одной из пяти составляющих сенсорной системы, способность воспринимать электромагнитное излучение видимого спектра по своей важности значительно превалирует над остальными:

«Через три дня после изучения какого-либо текстового материала, вы вспомните всего 10% прочитанного. Несколько релевантных изображений способны увеличить эту цифру на 55%.

Иллюстрации гораздо эффективнее текста отчасти потому, что чтение само по собе не приносит ожидаемых результатов. Наш мозг воспринимает слова в виде крошечных изображений. Чтобы вникнуть в смысл одного предложения, необходимо больше времени и энергии, нежели для того, чтобы рассмотреть красочную картинку».

На самом деле то, что мы так сильно полагаемся на свою зрительную систему, имеет несколько негативных моментов. Вот один из них:

«Наш мозг вынужден постоянно строить догадки, так как он не имеет никакого понятия, где конкретно находятся видимые предметы. Человек живет в трехмерном пространстве, тогда как свет на сетчатку его глаза падает в двумерной плоскости. Таким образом, мы додумываем все, что не можем увидеть».

На картинке, представленной ниже, показано, какая часть головного мозга отвечает за обработку визуальной информации, и ее взаимодействие с другими областями мозга.

6. Влияние типа личности

Умственная активность экстравертов значительно повышается, когда «выгорает» рискованная сделка или удается провернуть какую-то авантюру. С одной стороны, это просто генетическая предрасположенность общительных и импульсивных людей, а с другой — разные уровни нейромедиатора дофамина в мозгу разных типов личности.

«Когда стало известно, что рискованная сделка оказалась удачной, повышенная активность прослеживалась в двух областях мозга экстравертов: миндалевидном теле (лат. corpus amygdaloidum) и прилежащем ядре (лат. nucleus accumbens)».

Прилежащее ядро является частью дофаминергической системы, вызывающей чувство удовольствия и влияющей на процессы мотивации и обучения. Дофамин, вырабатываемый в мозгу экстравертов, подталкивает их к совершению безумных поступков и дает возможность полностью насладиться происходящими вокруг событиями. Миндалевидное тело, в свою очередь, играет ключевую роль в формировании эмоций и отвечает за обработку возбуждающих и угнетающих импульсов.

Другие исследования продемонстрировали, что самая большая разница между интровертами и экстравертами заключается в процессах обработки различных стимулов, поступающих в мозг. У экстравертов этот путь гораздо короче — возбуждающие факторы двигаются через области, отвечающие за обработку сенсорной информации. У интровертов траектория движения стимулов гораздо сложнее — они проходят через области, связанные с процессами запоминания, планирования и принятия решений.

7. Эффект «полного провала»

Профессор социальной психологии Стэнфордского университета (Stanford University) Эллиот Аронсон (Elliot Aronson) обосновал существование так называемого эффекта «полного провала» (Pratfall Effect). Его суть состоит в том, что допуская ошибки, мы больше нравимся людям.

«Тот, кто никогда не ошибается, менее симпатичен окружающим, нежели тот, кто временами делает глупости. Совершенство создает дистанцию и невидимую ауру недосягаемости. Именно поэтому в выигрыше всегда тот, у кого есть хоть какие-то изъяны.

Эллиот Аронсон провел замечательный эксперимент, подтверждающий его гипотезу. Группе участников было предложено прослушать две аудиозаписи, сделанные во время собеседований. На одной из них было слышно, как человек опрокидывает чашку кофе. Когда участников опросили, какой из претендентов им симпатизировал больше, все проголосовали за неуклюжего соискателя».

8. Медитация — подзарядка для мозга

Медитация полезна не только для улучшения внимания и сохранения спокойствия в течении дня. Различные психофизические упражнения имеют множество положительных эффектов.

Спокойствие

Чем чаще мы медитируем, тем спокойнее становимся. Это утверждение несколько спорное, но довольно интересное. Как выяснилось, причиной тому является разрушение нервных окончаний мозга. Вот как выглядит префронтальная кора до и после 20-минутной медитации:

Во время медитации нервные связи значительно ослабевают. При этом связи между областями мозга, отвечающими за рассуждения и принятия решений, телесными ощущениями и центром страха, наоборот, укрепляются. Поэтому, переживая стрессовые ситуации, мы можем более рационально их оценивать.

Креативность

Исследователи Лейденского университета в Нидерландах, изучая целенаправленную медитацию и медитацию ясного ума, обнаружили, что у участников эксперимента, практикующих стиль целенаправленной медитации, не наблюдалось особых изменений в областях мозга, регулирующих процесс творческого мышления. Те, кто избрал для себя медитацию ясного ума, намного превзошли остальных участников по результатам последующего тестирования.

Память

Кэтрин Кэрр (Catherine Kerr), доктор философских наук, сотрудник Центра Биомедицинского Сканирования MGH (Martinos Center for Biomedical Imaging) и Исследовательского центра Ошера Гарвардской Медицинской Школы, утверждает, что медитация повышает многие умственные способности, в частности — быстрое запоминание материала. Способность абсолютно абстрагироваться от всех отвлекающих факторов позволяет людям, практикующим медитацию, предельно концентрироваться на выполняемой задаче.

9. Упражнения — реорганизация и воспитание силы воли

Конечно, физические упражнения очень полезны для нашего тела, но как насчет работы мозга? Между тренировками и умственной активностью существует точно такая же связь, как между тренировками и положительными эмоциями.

«Регулярная физическая нагрузка может стать причиной значительного улучшения когнитивных способностей человека. В результате проведенного тестирования выяснилось, что люди, активно занимающиеся спортом, в отличие от домоседов, имеют хорошую память, быстро принимают правильные решения, без особого труда концентрируют внимание на выполнении поставленной задачи и умеют выделять причинно-следственные связи».

Если вы только приступили к занятиям, ваш мозг воспримет это событие не иначе как стресс. Учащенное сердцебиение, одышка, головокружение, судороги, мышечная боль и т. д. — все эти симптомы возникают не только в тренажерных залах, но и в более экстремальных жизненных ситуациях. Если ранее вы ощущали что-то подобное, эти неприятные воспоминания обязательно всплывут в памяти.

Чтобы защититься от стресса, во время тренировки мозг вырабатывает белок BDNF (нейротрофический фактор мозга). Вот почему после занятий спортом мы чувствуем себя непринужденными и в конечном итоге даже счастливыми. Кроме того — как защитная реакция в ответ на стресс — увеличивается выработка эндорфинов:

«Эндорфины минимизируют ощущение дискомфорта во время занятий, блокируют боль и способствуют возникновению чувства эйфории».

10. Новая информация замедляет ход времени

Вы когда-нибудь мечтали о том, чтобы время летело не так быстро? Наверное, неоднократно. Зная, каким образом человек воспринимает время, можно искусственно замедлять его ход.

Поглощая огромное количество информации, поступающей от разных органов чувств, наш мозг структурирует данные таким образом, чтобы мы могли беспрепятственно воспользоваться ими в будущем.

«Так как информация, воспринимаемая мозгом, совершенно неупорядоченная, она должна быть реорганизована и усвоена в понятной для нас форме. Несмотря на то, что процесс обработки данных занимает миллисекунды, новая информация усваивается мозгом немного дольше. Таким образом, человеку кажется, что время тянется вечность».

Более странно то, что за восприятие времени отвечают практически все области нервной системы.

Когда человек получает много информации, мозгу необходимо определенное время на ее обработку, и чем дольше длится этот процесс, тем больше замедляется ход времени.

Когда же мы в который раз работаем над до боли знакомым материалом, все происходит с точностью до наоборот — время пролетает практически незаметно, так как особых умственных усилий прикладывать не приходится.

1. Мозг не чувствует боль

Tatiana Ayazo / rd.com

Вы когда-нибудь задумывались, как нейрохирурги проводят операции на мозге без наркоза? Просто в мозге нет болевых рецепторов. Зато они есть в мозговых оболочках и кровеносных сосудах. Поэтому, когда мы испытываем головную боль, болит вовсе не сам мозг, а окружающие его ткани.

2. Мозг работает активнее, когда мы спим


Tatiana Ayazo / rd.com

Работая, мозг создаёт электрические поля, которые можно измерить на поверхности кожи головы с помощью метода электроэнцефалографии (ЭЭГ). Нам кажется, что во время сна мозг выключен, но на самом деле он работает даже активнее, чем днём. В период бодрствования он производит альфа- и бета-волны, а во время сна, особенно на его начальных стадиях, тета-волны. Их амплитуда больше, чем у других волн.

3. Клетки мозга - это не только нейроны


Tatiana Ayazo / rd.com

На один нейрон приходится около десяти глиальных клеток. Они обеспечивают нейронам доступ питательных веществ и кислорода, отделяют нейроны друг от друга, участвуют в метаболических процессах и передаче нервных импульсов.

4. Влюблённость можно увидеть на фМРТ-снимках


Tatiana Ayazo / rd.com

Кто-то считает, что влюблённость - это просто концепция, но фМРТ-снимки мозга доказывают обратное. У людей в этом состоянии активны области мозга, связанные с . На снимках видно, как «загораются» места, в которых присутствует дофамин - нейромедиатор, вызывающий приятные ощущения.

5. Мозг производит достаточно электричества, чтобы загорелась небольшая лампочка


Tatiana Ayazo / rd.com

9. На мозг, как и на мышцы, распространяется правило «Используй или потеряешь»


Tatiana Ayazo / rd.com

Мы можем расширить свой когнитивный резерв, или врождённую способность мозга восстанавливаться, с помощью разных видов обучения и новых впечатлений. Было доказано, что люди с более развитым когнитивным резервом лучше справляются с неожиданностями. Но если мозг не использовать, этот резерв будет сокращаться.

10. Кратковременной памяти хватает на 20–30 секунд


Tatiana Ayazo / rd.com

Вы когда-нибудь задумывались, почему после того, как мы ненадолго отвлеклись, мы забываем, что хотели сказать? Это связано со способностью мозга удерживать в памяти небольшие объёмы информации. Он сохраняет её для быстрого доступа, но всего лишь в течение 20–30 секунд. Числа, например, удерживаются в памяти в среднем 7,3 секунды, а буквы - 9,3.

Объясняем, куда деваются наши врождённые способности, почему так сложно говорить на иностранном языке без акцента и что творится в голове у подростка...

В этой статье мы расскажем несколько интересных фактов о развитии и работе мозга, описанных в книге Риты Картер «Как работает мозг». На русском языке книга вышла в издательстве Corpus, её переводом занимался кандидат биологических наук Пётр Петров.

Картер - научная журналистка из Великобритании, свой путеводитель по работе мозга она написала в сотрудничестве с известным нейробиологом Кристофером Д. Фритом, выступившим научным консультантом книги.

Почему эту книгу можно назвать «путеводителем»? Дело в том, что Картер описывает в ней мозг в первую очередь как пространство, территорию, особый ландшафт, уделяя особое внимание тому, какие зоны мозга за какие задачи отвечают, в каких случаях они бывают задействованы по отдельности, а в каких - совместно.

Для нашей короткой экскурсии по этой огромной территории мы выбрали только малую часть данных, что есть в книге.

1. Мозг удаляет ненужные связи между нейронами

Нейроны - клетки, отвечающие непосредственно за мозговую активность, - составляют примерно десятую часть от всех клеток мозга. Они похожи на корневые системы со множеством отростков, с помощью которых один нейрон соединяется с другими. Такая связь называется синапсом.

Поначалу, когда мы только рождаемся, наши нейроны незрелы, связи между ними образуются хаотично. Например, появляется много связей между слуховой и зрительной зонами коры головного мозга, в результате чего возникает знаменитый эффект синестезии - когда человек «слышит» цвета или «видит» звуки.

Но одни синапсы используются чаще, а другие реже, и постепенно мозг начинает самостоятельно уничтожать те связи между нейронами, которые кажутся лишними.

Этот эффект называется прунингом (от англ. to prune - прореживать, подрезать ветви).

С одной стороны, это здорово, ведь прунинг повышает эффективность работы мозга. С другой, в процессе прунинга мы утрачиваем связи, отвечающие за интуитивные навыки и дарования. Например, фотографическая память, часто встречающаяся у маленьких детей, исчезает именно из-за прунинга.

2. В мозгу младенца столько же нейронов, сколько у взрослых

Да, мозг новорождённого значительно меньше, чем у взрослого, и после рождения его созревание продолжается ещё долго, до двадцати с небольшим лет. Однако число нейронов в мозгу новорождённого и взрослого примерно одинаково.

Другое дело, что функционируют они не столь эффективно. На отростках многих нейронов младенца не хватает миелина - жироподобного вещества, которое помогает нейронам передавать сигналы. Поэтому обширные области мозга новорождённого просто ещё не функционируют, особенно это касается коры больших полушарий.

В этот период самые активные области мозга - те, что отвечают за рефлексы, чувствительность и движения. Отделы, задействованные в принятии решений, планировании и рассудочной деятельности, развиваются позже.

3. В подростковом возрасте изменяется работа префронтальной коры мозга

Префронтальная кора (ПФК) - это передняя часть лобных долей мозга. Как раз её мы и задействуем при планировании и принятии решений. Кроме того, она нужна нам для понимания других людей.

После рождения число синапсов в ПФК постоянно возрастает, пока дело не доходит до подросткового возраста. Тогда количество нейронных связей вдруг начинает снижаться.

Вы наверняка наслышаны про то, что за особенности поведения ребёнка в подростковый период отвечают гормоны. Так вот, не только они.

Вспомним про прунинг - именно с его помощью мозг в этом возрасте ведёт тонкую настройку ПФК. Естественно, в период прунинга этот отдел мозга должен быть менее активным, чем обычно.

Эксперименты показали, что во время выполнения задач, связанных с пониманием намерений других людей, у подростков активность ПФК довольно низкая.

Зато при обдумывании собственных намерений, наоборот, активность ПФК у подростков даже выше, чем у взрослых.

Исследование собственных возможностей и поиск персональных когнитивных стратегий - именно это, как считает наш мозг, главная задача подростка.

4. Отростки нейронов в правом полушарии длиннее, чем в левом

Мы знаем, что большинство функций мозга обычно в большей степени связаны с одним из двух полушарий. Хотя они и работают сообща, мы возлагаем на левое полушарие ответственность за анализ и логику, точное и детальное восприятие; а на правое - за обобщение и абстрагирование, непосредственное чувственное восприятие.

Интересно, что нейроны у левого и правого полушарий по своей структуре также отличаются - в правом полушарии нейроны расположены на большем расстоянии друг от друга, чем в левом. Это происходит потому, что у клеток правого полушария более длинные аксоны - соединительные отростки.

Из-за этого правое полушарие лучше приспособлено для одновременного использования сразу нескольких модулей мозга, оно даёт нам широкое, хотя и расплывчатое представление о том или ином феномене.

5. Приступы паники и фобии запускает миндалина

Эмоциональная реакция страха - это сформировавшийся в процессе нашей эволюции защитный механизм. Это оперативная реакция на какой-то простой стимул, который мы воспринимаем как несущий опасность - неизвестное явление, большой объект, угрожающая поза.

Мы научились бояться, чтобы уметь выживать в огромном и опасном мире. Но что-то пошло не так.
У нас появились фобии.

Они выражаются в сильной эмоции страха, но беда в том, что они не связаны с реальной опасностью. Фобии не помогают нам выживать, более того - мешают.

Представьте, что в здании пожар, и вам нужно спуститься по лестнице из окна. И вдруг вас парализует приступ боязни высоты.

То есть в ситуации реальной угрозы вашей жизни вы из-за фобии можете во вред себе отреагировать на угрозу мнимую.

В основе таких приступов страха лежит разделение отделов мозга, отвечающих за формирование памяти. За формирование наших сознательных воспоминаний в первую очередь ответственен гиппокамп, и к нему мы обращаемся, когда вспоминаем какие-то образы и события.

А вот бессознательная память хранится в других отделах, в частности - в миндалевидном теле, или миндалине. Миндалина записывает в том числе наши сильные эмоциональные и физиологические реакции (учащённое сердцебиение, потение и т. д.) и может воспроизводить их.

Когда мы вспоминаем что-то (например, как спуститься по высокой лестнице), мозг обращается не только к осознанной памяти из гиппокампа, но и к миндалине. Закрепившиеся в ней воспоминания могут быть практически неуправляемы. Они запускаются и заставляют человека заново пережить прежний приступ страха или психологическую травму.

Особенно часто бессознательные воспоминания формируются при стрессе - в это время мозг выделяет гормоны и нейромедиаторы, повышающие возбудимость миндалины.

6. Для мозга освоение родного и иностранных языков - два разных процесса

В раннем детстве адекватное усвоение языка происходит естественным образом, если ребёнок с самого рождения слышит речь. И когда мы появляемся на свет, у нас есть потенциальная возможность освоить любой язык.

Но в основном ребёнка окружают люди, говорящие только на одном языке, и языковые возможности вскоре сужаются.

Нейронные связи, необходимые для распознавания незнакомых звуков иноязычной речи, атрофируются в процессе прунинга, если их не стимулировать.

К пяти годам основные речевые зоны сосредотачиваются только в одном полушарии (обычно в левом), а оставшиеся без дела зоны другого полушария берут на себя другие функции, например, невербальную речь (жестикуляцию).

Когда мы впоследствии учим иностранный язык, мы задействуем оставшиеся связи, ориентируемся на родную речь и поэтому говорим с акцентом.

При этом информация, связанная с изучением родного и иностранных языков, обрабатывается мозгом в разных речевых зонах.

Вот почему бывает так, что при поражении конкретной речевой зоны (например, при инсульте) человек может забыть родную речь, а способность общаться на выученном во взрослом возрасте иностранном языке у него останется.опубликовано .

Если у вас возникли вопросы, задайте их

Артём Серебряков

P.S. И помните, всего лишь изменяя свое сознание - мы вместе изменяем мир! © econet

Невероятные факты

Мозг - один из самых удивительных органов в человеческом теле. Он контролирует нашу центральную нервную систему, помогает нам ходить, разговаривать, дышать и думать. К тому же это невероятно сложная система, состоящая из 100 миллиардов нейронов .

В мозге происходит так много всего, что сразу несколько областей медицины и науки посвящены его изучению и лечению, включая неврологию, психологию и психиатрию.

Хотя люди изучали мозг с еще древних времен, многие аспекты мозга остаются до сих пор загадкой . Неудивительно, что мы склонны упрощать информацию о том, как работает мозг, чтобы лучше его понять. Это привело к появлению множества заблуждений о нашем мозге.

1. Цвет мозга: наш мозг серый

Вы когда-нибудь задумывались о цвете собственного мозга? Скорее всего - нет, если вы не работаете в медицинской сфере. Если у вас была возможность видеть мозг, сохраненный в банке, то он, как правило, имел белый или серый с желтоватым оттенок. Однако живой пульсирующий мозг в нашем черепе не такой тусклый на вид. В нем присутствует белый, черный и красный компонент .

Хотя большая часть мозга серая, так называемое серое вещество , которое представляет собой разные типы клеток, он содержит и белое вещество , содержащее нервные волокна, присоединенные к серому веществу.

В мозге также есть черная субстанция (Substantia nigra ), которая имеет черный цвет благодаря нейромеланину – особому виду пигмента, который окрашивает кожу и волосы и является частью базальных ганглиев.

И наконец, красный цвет появляется благодаря множеству кровеносных сосудов в мозге. Так почему же мозг имеет такой тусклый цвет? Это все благодаря формальдегиду, который сохраняет мозг в банке.

2. Эффект Моцарта: прослушивание классической музыки делает нас умнее

Многие родители покупают DVD, видео и другую продукцию классической музыки, искусства и поэзии для малышей, считая, что это полезно для умственного развития ребенка . Есть даже сборники классической музыки, разработанные для еще неродившихся детей в животе в матери. Эта идея стала настолько популярной, что ее назвали "эффектом Моцарта".

Откуда же появился этот миф? В 1950-х годах врач-отоларинголог Альберт Томатис (Albert Tomatis) заявил, что прослушивание музыки Моцарта помогло людям с речевыми и слуховыми нарушениями .

В 1960-х годах 36 студентов участвовали в исследовании Калифорнийского университета, прослушивая по 10 минут из сонаты Моцарта перед тем, как пройти тест IQ. Согласно психологу д-ру Гордону Шоу (Gordon Shaw), баллы студентов по IQ увеличились в среднем на 8 баллов и так родился "эффект Моцарта ".

Однако, как оказалось, исследователь, проводивший этот эксперимент, никогда не утверждал, что музыка может сделать кого-то умнее, а лишь показал, что она улучшает выполнение некоторых пространственно-временных задач. Другим исследователям не удалось повторить результаты, и сейчас нет данных о том, что прослушивание музыки Моцарта или другой классической музыки может сделать вас умнее.

Единственное, что известно, так этот то, что изучение игры на музыкальных инструментах улучшает концентрацию, уверенность в себе и координацию .

3. Извилины мозга: у нас появляются новые складки в мозге, когда мы учим что-то новое

Когда мы представляем себе, как выглядит мозг, мы рисуем себе картину закругленной серой массы из двух долей с множеством "морщин" или борозд.

По мере нашего развития, мозг стал больше, чтобы вместить все высшие функции, которые отличают нас от других животных. Но, чтобы мозг мог умещаться в череп, он должен находится в определенной пропорции к остальной части тела, и мозг начал морщиться .

Если бы можно было разгладить все извилины и борозды, мозг стал бы размером с подушку. Существуют различные виды извилин и борозд со своим названием, и они отличаются у разных людей.

Однако такой "морщинистый" вид появляется не сразу. У плода на раннем этапе развития очень гладкий небольшой мозг. По мере роста плода, растут нейроны, которые передвигаются к различным областям мозга, создавая впадины и борозды. Через 40 недель его мозг становится таким же складчатым (но меньше по размеру), как и мозг взрослого человека.

Таким образом новые складки не появляются по мере, того как мы учимся , и все складки, с которыми мы рождаемся остаются на всю жизнь, если конечно мы здоровы.

Во время обучения наш мозг действительно меняется, но не в плане извилин и борозд. Изучая мозг животных, ученые выяснили, что синапсы - связи между нейронами и кровяные клетки, которые поддерживают нейроны, растут и их количество увеличивается. Это явление называется нейропластичностью.

4. Мозг может выполнять несколько функций одновременно

5. 25-й кадр: Мы можем учиться, влияя на подсознание

25-й кадр – это сообщение, заключенное в картинку или звук, которое было сделано с целью внедрить его в подсознание и повлиять на поведение человека .

Первым человеком, кто ввел этот термин, стал Джеймс Вайкери (James Vicary), который заявил, что внедрил сообщения во время показа фильма в Нью-Джерси. Сообщение вспыхивало на экране на 1/3000 секунды, внушая зрителям "выпить Кока-колу" или "Съесть попкорн".

Согласно Вайкери, продажи колы в кинотеатре выросли на 18 процентов, а попкорна на 57 процентов , что подтверждало эффективность 25-го кадра. Результаты этого эксперимента стали использовать в телевизионной рекламе, чтобы убедить покупателей приобретать определенные продукты.

Но на самом ли деле 25-й кадр действовал? Как оказалось, Вайкери сфабриковал результаты исследования . Последующие исследования, как например, сообщение "Звони прямо сейчас", которое показывали на канадском телевидении, не оказало никакого действия на телезрителей. Однако многие люди до сих пор считают, что музыка и реклама содержит скрытые посылы.

И хотя прослушивание специальных записей для самовнушения, возможно, не повредит, вряд ли это поможет вам бросить курить.

6. Размер мозга: у человека самый большой мозг

Многие животные используют свой мозг, чтобы выполнять те же действия, что и люди, например, чтобы найти решение задачи, используя инструменты, и демонстрируя сопереживание. И хотя ученые не пришли к согласию относительно того, что делает человека умным, большинство все же согласны, что человек является самым умным существом на Земле . Возможно по этой причине, многие приходят к выводу, что у нас самый крупный мозг среди животных.

Но это не совсем так. Средний вес человеческого мозга составляет 1361 грамм . У дельфинов – очень умных животных, мозг имеет в среднем такой же вес. Тогда как у кашалота, который считается не таким умным, как дельфин, мозг весит около 7 800 грамм.

С другой стороны мозг гончих собак весит около 72 грамм, а мозг орангутана 370 грамм. И собаки и орангутаны считаются умными животными, но у них маленький мозг . А у птиц, как например, голубя, вес мозга составляет всего 1 грамм.

При этом, вес тела дельфина составляет в среднем 158, 8 кг, а кашалота 13 тонн. Обычно чем больше животное, тем крупнее его череп и соответственно мозг. Гончие относительно небольшие собаки, весом до 11,3 кг, и потому их мозг меньше. Другими словами важен не размер мозга, а соотношение веса мозга по отношению к общему весу тела . У людей такое соотношение составляет 1 к 50, и на мозг приходится больше веса, чем у других животных. Для большинства млекопитающих, соотношение составляет 1 к 220.

Интеллект также связан с разными составляющими мозга. У млекопитающих более развита кора больших полушарий, отвечающая за высшие функции , такие как память, общение и мышление, в отличие от птиц, рыб и рептилий. У человека самая большая мозговая кора по отношению к размеру мозга.

7. Мозг остается активным после обезглавливания

Когда-то, обезглавливание считалось одним из самых распространенных методов экзекуции, отчасти благодаря гильотине. Хотя многие страны отказались от этого метода казни, его все еще применяют среди террористов и других групп. При этом гильотина была выбрана в качестве быстрой и относительно гуманной смерти. Но насколько быстро она происходит?

Идея того, что после отсечения головы, вы какое-то время находитесь в сознании , появилась во времена Французской революции, когда была создана гильотина. В 1793 году француженка Шарлотта Корде была казнена при помощи гильотины за убийство радикального журналиста, политика и революционера Жана Поля Марата .

После отсечения головы женщины, один из помощников поднял ее голову и ударил по щеке. Согласно свидетелям, глаза Корде посмотрели на помощника, и на ее лице было выражение негодования. После этого инцидента, людей, которых обезглавливали, просили после казни моргнуть, и некоторые свидетели утверждали, что глаза продолжали моргать еще в течение 30 секунд .

Другим примером стал случай, описанный французским врачом д-ром Габриелем Бюри (Gabriel Beaurieux), который наблюдал за обезглавливанием мужчины по имени Лонгиль. Врач утверждал, что видел, как веки и губы ритмически сжимались в течение 5-6 секунд, а когда он назвал его по имени, веки жертвы медленно приподнялись, а его зрачки сфокусировались.

Все эти случаи могут заставить нас поверить в то, что после обезглавливания человек может оставаться в сознании даже на несколько секунд. Однако большинство современных врачей считают, что такая реакция является не чем иным, как рефлекторными подергиваниями мышц .

Мозг, отрезанный от сердца, сразу впадает в кому и начинает умирать, а сознание теряется в течение 2-3 секунд , из-за быстрого уменьшения внутричерепного кровотока. Что же касается безболезненности гильотины, то разделение головного и спинного мозга после рассечения окружающих тканей вызывает резкую и очень сильную боль. По этой причине, обезглавливание во многих странах не применяется.

8. Травма мозга необратима

Наш мозг очень хрупкий орган, который восприимчив к множеству травм . Повреждение мозга может вызвать что угодно, начиная от инфекций до автомобильной катастрофы, и часто ведет к смерти клеток мозга. У многих людей травма мозга ассоциируется с образами людей в вегетативном состоянии или с постоянными физическими или умственными нарушениями.

Но это не всегда так. Существует разные виды травм мозга, и то, как она повлияет на человека, зависит от места и тяжести повреждения . При легкой травме мозга, как например сотрясении , мозг отскакивает внутри черепа, что может привести к кровотечению и разрывам, но мозг при этом может хорошо восстановиться. При тяжелой травме мозга, иногда требуется операция, чтобы убрать скопление крови или уменьшить давление. В этом случае последствия, как правило, необратимые.

Однако некоторые люди с травмой мозга, могут частично восстановиться после повреждения . Если нейроны были повреждены или потеряны, они не могут снова вырасти, но синапсы - связи между ними, могут.

Часто мозг создает новые связи, и некоторые области мозга берут на себя новые функции и учатся заново делать какие-то вещи. Так пациенты, пережившие инсульт, восстанавливают речь или моторные навыки.

9. Действие наркотиков: при употреблении наркотиков в мозге образуются дыры

То, как наркотики влияют на мозг, до сих пор является предметом споров. Некоторые считают, что только при злоупотреблении наркотических веществ могут появиться долговременные последствия, другие – что эти последствия появляются сразу после первого употребления.

В одном исследовании выяснили, что потребление марихуаны приводит только к небольшой потере памяти , а в другом, что долгое и частое использование может сморщить части мозга. Некоторые люди даже считают, что использование таких наркотиков, как кокаин и экстези может привести к появлению дыр в мозге.

На самом деле, единственное, что может продырявить ваш мозг – это физическая травма .

Тем не менее, наркотические вещества действительно вызывают кратковременные и долговременные последствия в мозге. Они могут уменьшить воздействие нейромедиаторов – передатчиков нервных импульсов, таких как допамин. Это объясняет, почему наркоманам нужно потреблять все больше наркотиков , чтобы добиться тех же ощущений. Также это может привести к проблемам в функции нейронов.

В 2008 году исследование показало, что длительное потребление некоторых наркотиков может вызвать рост определенных структур мозга. По этой причине наркоманам бывает так сложно изменить свое поведение.

10. Алкоголь убивает клетки мозга

Один лишь взгляд на пьяного человека может убедить нас в том, что алкоголь напрямую воздействует на мозг. Среди последствия неумеренного потребления алкоголя наблюдается спутанность речи, нарушенная моторики и суждения . Также человек часто страдает от головной боли, тошноты и неприятного побочного эффекта – похмелья. Но может ли стаканчик другой убить клетки мозга? А что насчет запоев или постоянного употребления алкоголя?

На самом деле, даже у алкоголиков, потребление алкоголя не приводят к смерти клеток мозга . Однако, он действительно повреждает окончания нейронов, называемые дендридами. Это приводит к тому, что возникают проблемы при передаче сообщений между нейронами, хотя такое повреждение обратимо.

У алкоголиков может развиться неврологическое нарушение называемое синдром Гайе-Вернике , при котором происходит потеря нейронов в определенных частях мозга. Также этот синдром вызывает проблемы с памятью, спутанность сознания, паралич глаз, отсутствие мышечной координации и амнезию. Кроме того, это может привести к смерти.

Само нарушение вызвано не алкоголем, а недостатком тиамина или витамина В1. Дело в том, что алкоголики часто плохо питаются, а злоупотребление алкоголем мешает всасыванию тиамина.

И хотя алкоголь не убивает клетки мозга, в больших количествах он все равно повреждает мозг .

Бонус: Сколько процентов мозга использует человек?

Вы наверняка часто слышали о том, что мы используем только 10 процентов нашего мозга. В пример даже приводят цитаты известных людей, таких как Альберт Эйнштейн и Маргарет Мид.

Источником этого мифа стал американский психолог Уильям Джеймс , которые как-то сказал, что "средний человек редко достигает только малой доли своего потенциала". Каким-то образом эту фразу превратили в "10 процентов нашего мозга".

С первого взгляда это кажется нелогичным. Зачем нам такой большой мозг, если мы его полностью не используем? Появились даже книги, которые обещали научить людей использовать остальные 90 процентов их мозга .

Но, как можно было уже догадаться, такое мнение ошибочно. Кроме 100 миллиардов нейронов, мозг содержит разные типы клеток, которые мы постоянно используем. Человек может стать инвалидом, даже при повреждении небольшой области мозга, в зависимости от того, где она находится, и потому мы не можем существовать только на 10 процентах мозга.

Сканирование мозга показало, что, что бы мы не делали, наш мозг всегда остается активным . Одни области более активны, чем другие, но нет части, которая бы совсем не работала.

Так, например, если вы сидите за столом и едите бутерброд, вы не используете свои ноги. Вы сконцентрированы на том, чтобы поднести бутерброд ко рту, прожевать и проглотить его. Но это не значит, что ваши ноги не работают. В них сохраняется активность, как например кровоток, даже если вы ими не двигаете.

Другими словами у нас нет скрытого дополнительного потенциала , который можно было использовать. Но ученые до сих пор продолжают изучать мозг.

Доктор медицинских наук В. Гриневич, профессор кафедры гистологии и эмбриологии Российского государственного медицинского университета, лауреат стипендий Фогарти (Национальные институты здоровья, США), Александра фон Гумбольдта (Германия) и премии Европейской академии.

1. Охарактеризуйте, пожалуйста, состояние области науки, в которой вы работаете, каким оно было примерно 20 лет назад? Какие тогда проводились исследования, какие научные результаты явились самыми значительными? Какие из них не потеряли актуальности на сегодняшний день (что осталось в фундаменте здания современной науки)?

2. Охарактеризуйте сегодняшнее состояние той области науки и техники, в которой вы трудитесь. Какие работы последних лет вы считаете самыми главными, имеющими принципиальное значение?

3. На какие рубежи выйдет ваша область науки через 20 лет? Какие кардинальные проблемы, по-вашему, могут быть решены, какие задачи будут волновать исследователей в конце первой четверти XXI века?

На вопросы анкеты "Вчера, сегодня, завтра" (см. "Наука и жизнь" №№ , , 2004 г.; №№ , , , 2005 г.) отвечают известные ученые - авторы "Науки и жизни".

"Вчера". Область науки, которой я занимаюсь, - эндокринология, изучает физиологию и патологию желез внутренней секреции: щитовидной железы, половых желез, надпочечников и др. Их совокупность называется эндокринной системой. Основным действующим началом в ней являются биологически активные вещества - гормоны. Примечательно, что термину "гормон" (от древнегреческого глагола "hormaо" - приводить в движение, побуждать) в этом году исполняется 100 лет. Его ввел американо-английский физиолог Эрнест Старлинг, с лекций которого, прочитанных в июне 1905 года в Королевском колледже врачей Лондона, по сути, и началась эндокринология как наука.

Наиболее значительным открытием в области эндокринологии, сделанным со времен Старлинга, было обнаружение в головном мозге биологически активных веществ, обладающих свойствами гормонов. Они выделяются в кровь и стимулируют эндокринные железы, координируя их деятельность. Эти вещества назвали нейрогормонами, а раздел эндокринологии, который их изучает, - нейроэндокринологией.

Оказалось, что головной мозг (а именно его эволюционно древний отдел - гипоталамус) является "композитором" оркестра желез внутренней секреции. Гипоталамические нейрогормоны действуют на гипофиз, а тот выделяет широкий спектр гормонов, которые в свою очередь стимулиру ют железы внутренней секреции. Кстати, гипофиз, маленький придаток мозга, известен даже не сведущей в науке публике благодаря повести М. А. Булакова "Собачье сердце" и блестящей ее экранизации. Через гипофиз происходит тонкая настройка работы эндокринных желез, которые регулируют половые функции организма, адекватную реакцию на стресс, рост и размножение клеток организма, потребление тканями кислорода и глюкозы и многие другие физиологические процессы.

За открытие нейрогормонов американские исследователи Эндрю Шэлли и Роджер Гиллемин удостоены в 1977 году Нобелевской премии. До сих пор это - единственная Нобелевская премия в области эндокринологии.

"Сегодня". В настоящий момент идет активное накопление информации о генах нейрогормонов, регуляции их активности, воздействии гормонов на рецепторы клеток организма, участии их в разнообразных патологических процессах. Получение таких данных стало возможным благодаря развитию тонких генетических и молекулярно-биологических методов, появившихся в последние 10-20 лет. В первую очередь это касается манипуляций с ДНК, в результате которых удается получить животных без определенного гена (так называемые нокаутные животные), а также с измененным или новым геном из другого организма (трансгенные животные).

Расширяются наши представления о спектре действия гормонов. Они оказались вовлечены в сложные поведенческие акты. Кроме того, нейрогормоны управляют не только железами внутренней секреции, но и другими системами организма, например иммунной и сердечно-сосудистой. Это обнаружил еще в 30-40-х годах XX века "отец" учения о стрессе канадский исследователь Ганс Селье. Оказалось, что у животных, длительно подвергавшихся эмоциональному стрессу, увеличивались надпочечники и одновременно угасала вилочковая железа (тимус) - центральный орган иммунной системы. Впоследствии стало понятно, что во время стресса в головном мозге вырабатываются нейрогормоны, стимулирующие кору надпочечников, которая начинает производить стероидные гормоны. Один из них, кортизол (у грызунов его роль выполняет кортикостерон), часто называемый гормоном стресса, напрямую подавляет иммунную систему. Во многом благодаря этому наблюдению появилась новая медико-биологическая дисциплина - нейроиммуноэндокринология, которая изучает взаимодействие нервной, иммунной и эндокринной систем.

Для того чтобы проиллюстрировать то, чем занимается нейроиммуноэндокринология, приведу пример. Каждый из нас когда-то переносил вирусные или бактериальные инфекции. При этом происходит активация иммунной системы, ее клетки вырабатывают множество веществ, направленных на уничтожение источника возбудителя болезни. Среди широкого спектра этих веществ есть группа белков, которые называются цитокинами. В иммунной системе они играют роль координаторов работы различных типов клеток. Цитокины поступают в кровь и стимулируют клетки мозга, вырабатывающие нейрогормоны. Один из таких нейрогормонов, кортиколи берин, через гипофиз запускает выработку кортизола корой надпочечников. А кортизол, как мы уже говорили выше, избирательно снижает иммунный ответ, предотвращая запредельную активацию иммунной системы, которая может привести к поражению собственных тканей (как это происходит при аутоиммунных заболеваниях). Таким образом, все интегрирующие системы организма - нервная, иммунная, эндокринная - во время борьбы с инфекцией объединяются в одну функциональную систему нейроиммунноэндокринную.

Конец ХХ века подарил нам еще одну новую область знаний, в которой центральную роль играют нейрогормоны, - нейроэндокринологию поведения. Приведу примеры. Один из нейрогормонов, окситоцин, вызывает сокращение матки при родах. Поэтому синтетические аналоги окситоцина широко применяются в клинике для стимуляции родовой деятельности. Но у окситоцина есть еще одна функция: он отвечает за материнский инстинкт. У грызунов мать после родов иногда (пока непонятно почему) убивает свое потомство. Но если перед родами такой самке дать понюхать окситоцин, то она становится примерной матерью, оберегающей своих детенышей.

Другой нейрогормон, кортиколиберин (я уже упоминал его), отвечает за регуляцию функций коры надпочечников. Помимо этого оказалось, что кортиколиберин еще и провоцирует развитие депрессивных состояний. Его содержание в спинномозговой жидкости у людей, страдающих депрессией, повышено в несколько раз. Неудивительно, что нокаутные мыши, нечувствительные к кортиколиберину (лишенные рецептора этого нейрогормона в головном мозге), проявляют поразительную стойкость к стрессам и, похоже, депрессиями не страдают.

"Завтра". Сейчас в науке о гормонах происходит лавинообразное накопление новых знаний. Впрочем, это касается не только эндокринологии. И для того чтобы не "потеряться" в гигантском ворохе информации, исследователи вынуждены сужать сферу своих интересов, что неизбежно приводит к углублению изолированности научных направлений друг от друга. Я не буду оригинальным, если скажу, что в конечном итоге ученым придется создавать какие-то общие, интегративные модели функционирования организма, возможно, на основе математических и компьютерных технологий. Иначе целостной картины не удастся увидеть ни одному, даже самому эрудированному специалисту.

Если говорить более конкретно, то применение нейрогормонов в клинической практике расширится. Человек наверняка получит новые нейрогормональные препараты, помогающие при заболеваниях иммунной системы. Есть, например, такой нейрогормон - соматостатин. Его основная функция в нашем организме связана с угнетением секреции гормона роста (у него есть партнер-соперник - соматолиберин, который оказывает противоположное действие). Однако помимо этого соматостатин обладает удивительной способностью воздействовать на иммунную систему, а его синтетические аналоги имеют блестящую перспективу применения в клинике аутоиммунных заболеваний (ревматизм, артрит). А вещества-антагонисты другого нейрогормона кортиколиберина уже проходят клинические испытания для лечения депрессивных состояний.

Суммируя сказанное выше, можно заключить, что эндокринология, "выросшая" из XIX века, в конце ХХ века дала новое ответвление - нейроэндокринологию, изучающую, как эндокринная система контролируется мозгом. Несколько лет назад появились две новые, удивительные области знаний - нейроиммуноэндокринология и нейроэндокринология поведения. Оба направления уже нашли свои пути применения в клинике заболеваний иммунной системы и психиатрии. А какие еще новые идеи возникнут в будущем - будущее и покажет.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «api-clinic.ru» — Центр естественной медицины