Методы и средства измерения температуры. Классификация методов измерения температуры Какие физические принципы измерения температуры

Для определения значения температуры какого-либо тела необходимо выбрать эталон температуры, то есть тело, которое при определённых условиях, равновесных и достаточно легко воспроизводимых, имело бы определённое значение температуры. Это значение температуры является реперной точкой соответствующей шкалы температур - упорядоченной последовательности значений температуры, позволяющей количественно определять температуру того или иного тела. Температурная шкала позволяет косвенным образом определять температуру тела путем прямого измерения какого-либо его физического параметра, зависящего от температуры.

Наиболее часто при получении шкалы температур используются свойства вода. Точки таяния льда и кипения воды при нормальном атмосферном давлении выбраны в качестве реперных точек в современных (но не обязательно изначальных) температурных шкалах, предложенных Андерсом Цельсием (1701 - 1744), Рене Антуаном Фершо Реомюром (1683 - 1757), Даниэлем Габриэлем Фаренгейтом (1686 - 1736). Последний создал первые практически пригодные спиртовой и ртутный термометры, широко используемые до сих пор. Температурные шкалы Реомюра и Фаренгейта применяют в настоящее время в США, Великобритании и некоторых других странах.

Введенную в 1742 году температурную шкалу Цельсия, который предложил температурный интервал между температурами таяния льда и кипения воды при нормальном давлении (1 атм или 101 325 Па) разделить на сто равных частей (градусов Цельсия), широко используют и сегодня, правда в уточненном виде, когда один градус Цельсия считается равным одному кельвину (см. ниже). При этом температура таяния льда берется равной 0 oC, а температура кипения воды становится приблизительно равной 99,975 oC. Возникающие при этом поправки, как правило, не имеют существенного значения, так как большинство используемых спиртовых, ртутных и электронных термометров не обладают достаточной точностью (поскольку в этом обычно нет необходимости). Это позволяет не учитывать указанные, очень небольшие поправки.

После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы. Первая шкала - термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Эта температурная шкала подробно рассмотрена в третьей главе. Отметим только, что единицей измерения температуры в этой температурной шкале является один кельвин (1 К), одна из семи основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина) (1824 - 1907), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия. Вторая рекомендованная температурная шкала - международная практическая. Эта шкала имеет 11 реперных точек - температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1 К.

В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273,16 К при давлении 609 Па.

Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина - легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.

Тело, с помощью измерения термометрического признака которого осуществляется измерение температуры, называется термометрическим телом.

Термометрическими признаками могут быть изменения: объёма газа или жидкости, электрического сопротивления тел, разности электрического потенциала на границе раздела двух проводящих тел и т.д. Соответствующие этим признакам приборы для измерения температуры (термометры) будут: газовый и ртутный термометры, термометры, использующие в качестве датчика термосопротивление или термопару.

Приводя термометрическое тело (датчик термометра) в состояние теплового контакта с тем телом, температуру которого необходимо измерить, можно на основании нулевого начала термодинамики утверждать, что по прошествии времени, достаточного для установления термодинамического равновесия, их температуры сравняются. Это позволяет приписать телу то же значение температуры, которое показывает термометр.

Другой метод измерения температуры реализован в пирометрах - приборах для измерения яркостной температуры тел по интенсивности их теплового излучения. При этом достигается равновесное состояние термодинамической системы, состоящей из самого пирометра и теплового излучения, принимаемого им. Подробнее это явление рассмотрено в разделе курса, посвящённом квантовым свойствам равновесного теплового излучения. Сейчас мы только отметим, что оптическая пирометрия (бесконтактные методы измерения температур) используется в металлургии для измерения температуры расплава и проката, в лабораторных и производственных процессах, где необходимо измерение температуры нагретых газов, а также при исследованиях плазмы.

Первый термометр был изобретён Галилео Галилеем (1564 - 1642) и представлял собой газовый термометр.

Газовый термометр постоянного объёма состоит из термометрического тела - порции газа, заключенной в сосуд, соединенный с помощью трубки с манометром. Измеряемая физическая величина (термометрический признак), обеспечивающая определение температуры, - давление газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки уровень в правой трубке манометра доводится до одного и того же значения (опорной метки) и в этот момент производится измерения разности высот уровней жидкости в манометре. Учет различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объема, равной одной тысячной кельвина.

Газовые термометры имеют то преимущество, что температура, определяемая с их помощью, при малых плотностях газа не зависит от природы используемого газа, а шкала газового термометра - хорошо совпадает с абсолютной шкалой температур (о ней подробно будет сказано ниже). Во второй главе мы подробнее опишем идеально-газовый термометр, определяющий абсолютную шкалу температур.

Газовые термометры используют для градуировки других видов термометров, например, жидкостных. Они более удобны на практике, однако, шкала жидкостного термометра, проградуированного по газовому, оказывается, как правило, неравномерной. Это связано с тем, что плотность жидкостей нелинейным образом зависит от их температуры.

Жидкостной термометр - это наиболее часто используемый в обыденной жизни термометр, основанный на изменении объёма жидкости при изменении её температуры. В ртутно-стеклянном термометре термометрическим телом является ртуть, помещенная в стеклянный баллон с капилляром. Термометрическим признаком является расстояние от мениска ртути в капилляре до произвольной фиксированной точки. Ртутные термометры используют в диапазоне температур от -35 oC до нескольких сотен градусов Цельсия. При высоких температурах (свыше 300 oC) в капилляр накачивают азот (давление до 100 атм или 107 Па), чтобы воспрепятствовать кипению ртути. Применение в жидкостном термометре вместо ртути таллия позволяет существенно понизить нижнюю границу измерения температуры до -59 oC.

Другими видами широко распространённых жидкостных термометров являются спиртовой (от -80 oC до +80 oC) и пентановый (от -200 oC до +35 oC). Отметим, что воду нельзя применять в качестве термометрического тела в жидкостном термометре: объём воды с повышением температуры сначала падает, а потом растёт, что делает невозможным использование объема воды в качестве термометрического признака.

С развитием измерительной техники, наиболее удобными техническими видами термометров стали те, в которых термометрическим признаком является электрический сигнал. Это термосопротивления (металлические и полупроводниковые) и термопары.

В металлическом термометре сопротивления измерение температуры основано на явлении роста сопротивления металла с ростом температуры. Для большинства металлов вблизи комнатной температуры эта зависимость близка к линейной, а для чистых металлов относительное изменение их сопротивления при повышении температуры на 1 К (температурный коэффициент сопротивления) имеет величину близкую к 4*10-3 1/К. Термометрическим признаком является электрическое сопротивление термометрического тела - металлической проволоки. Чаще всего используют платиновую проволоку, а также медную проволоку или их различные сплавы. Диапазон применения таких термометров от водородных температур (~20 К) до сотен градусов Цельсия. При низких температурах в металлических термометрах зависимость сопротивления от температуры становится существенно нелинейной, и термометр требует тщательной калибровки.

В полупроводниковом термометре сопротивления (термисторе) измерение температуры основано на явлении уменьшения сопротивления полупроводников с ростом температуры. Так как температурный коэффициент сопротивления полупроводников по абсолютной величине может значительно превосходить соответствующий коэффициент металлов, то и чувствительность таких термометров может значительно превосходить чувствительность металлических термометров.

Специально изготовленные полупроводниковые термосопротивления могут быть использованы при низких (гелиевых) температурах порядка нескольких кельвин. Однако следует учитывать то, что в обычных полупроводниковых сопротивлениях возникают дефекты, обусловленные воздействием низких температур. Это приводит к ухудшению воспроизводимости результатов измерений и требует использования в термосопротивлениях, специально подобранных полупроводниковых материалов.

Другой принцип измерения температуры реализован в термопарах. Термопара представляет собой электрический контур, спаянный из двух различных металлических проводников, один спай которых находится при измеряемой температуре (измерительный спай), а другой (свободный спай) - при известной температуре, например, при комнатной температуре. Из-за разности температур спаев возникает электродвижущая сила (термо-ЭДС), измерение которой позволяет определять разность температур спаев, а, следовательно, температуру измерительного спая.

В таком термометре термометрическим телом является спай двух металлов, а термометрическим признаком - возникающая в цепи термо-ЭДС. Чувствительность термопар составляет от единиц до сотен мкВ/К, а диапазон измеряемых температур от нескольких десятков кельвин (температуры жидкого азота) до полутора тысяч градусов Цельсия. Для высоких температур применяются термопары из благородных металлов. Наибольшее применение нашли термопары на основе спаев следующих материалов: медь-константан, железо-константан, хромель-алюмель, платинородий-платина.

Следует отметить, что термопара способна измерить только разность температур измерительного и свободного спаев. Свободный спай находится, как правило, при комнатной температуре. Поэтому для измерения температуры термопарой необходимо использовать дополнительный термометр для определения комнатной температуры или систему компенсации изменения температуры свободного спая.

В радиотехнике часто применяют понятие шумовой температуры, равной температуре, до которой должен быть нагрет резистор, согласованный с входным сопротивлением электронного устройства, чтобы мощность тепловых шумов этого устройства и резистора были равными в определенной полосе частот. Возможность введения такого понятия обусловлена пропорциональностью средней мощности шума (среднего квадрата шумового напряжения на электрическом сопротивлении) абсолютной температуре сопротивления. Это позволяет использовать шумовое напряжение в качестве термометрического признака для измерения температуры. Шумовые термометры используются для измерения низких температур (ниже нескольких кельвинов), а также в радиоастрономии для измерения радиационной (яркостной) температуры космических объектов

Введение

Глава 1. Основные положения и понятия

1 Понятие о температуре и об устройствах измерения температур

1.2 Температурные шкалы

3 Международная температурная шкала

Глава 2. Методы измерения температуры

2.1 Контактный метод измерения температуры

2 Бесконтактный метод измерения температуры

3 Люминесцентные методы измерения температуры

Заключение

Список литературы

Введение

Высокопроизводительная, экономичная и безопасная работа различных технологических агрегатов требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования.

Основными параметрами (величинами), которые необходимо контролировать при работе агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.

Температура является одним из важнейших параметров технологических процессов. Она обладает некоторыми принципиальными особенностями, что обусловливает необходимость применения большого количества методов и технических средств для ее измерения.

.Основные положения и понятия

1 Понятие о температуре и об устройствах измерения температур

Температурой называют величину, характеризующую тепловое состояние тела. Температура может быть определена как параметр теплового состояния. Значение этого параметра обусловливается средней кинетической энергией поступательного движения молекул данного тела. При соприкосновении двух тел, например газообразных, переход тепла от одного тела к другому будет происходить до тех пор, пока значения средней кинетической энергии поступательного движения молекул этих тел не будут равны. С изменением средней кинетической энергии движения молекул тела изменяется степень его нагретости, а вместе с тем изменяются также физические свойства тела. При данной температуре кинетическая энергия каждой отдельной молекулы тела может значительно отличаться от его средней кинетической энергии. Поэтому понятие температуры является статистическим и применимо только к телу, состоящему из достаточно большого числа молекул; в применении к отдельной молекуле оно бессмысленно.

К пространству со значительно разреженной материей статистические законы неприменимы. Температура в этом случае определяется мощностью потоков лучистой энергии, пронизывающей тело, и равна температуре абсолютно черного тела с такой же мощностью излучения. Известно, что с развитием науки и техники понятие «температура» расширяется. Например, при исследованиях высокотемпературной плазмы было введено понятие «электронная температура», характеризующее поток электронов в плазме.

Возможность измерять температуру термометром основывается на явлении теплового обмена между телами с различной степенью нагретости и на изменении термометрических (физических) свойств веществ при нагревании. Следовательно, для создания термометра и построения температурной шкалы, казалось бы, возможно выбрать любое термометрическое свойство, характеризующее состояние того или иного вещества и на основании его изменений построить шкалу температур. Однако сделать такой выбор не так легко, так как термометрическое свойство должно однозначно изменяться с изменением температуры, не зависеть от других факторов и допускать возможность измерения его изменений сравнительно простым и удобным способом. В действительности нет ни одного термометрического свойства, которое бы в полной мере могло удовлетворить этим требованиям во всем интервале измеряемых температур.

На примере ртутного и спиртового термометра обычного типа видно, что если шкалы их между точками, соответствующими температурам кипения воды и таяния льда при нормальном атмосферном давлении, разделить на 100 равных частей (считая за 0 точку таяния льда), то очевидно, что показания обоих термометров ртутного и спиртового будут одинаковы в точках 0 и 100, потому что эти температурные точки были приняты за исходные для получения основного интервала шкалы. Если этими термометрами будем измерять одинаковую температуру какой-либо среды не в этих точках, то показания их будут различны, так как коэффициенты объемного теплового расширения ртути и спирта различно зависят от температуры.

Термометром называют устройство (прибор), служащее для измерения температуры путем преобразования ее в показания или сигнал, являющийся известной функцией температуры. Чувствительным элементом термометра называют часть термометра, преобразующую тепловую энергию в другой вид энергии для получения информации о температуре. Различают термометры контактные и бесконтактные. Чувствительный элемент контактного термометра входит в непосредственное соприкосновение с измеряемой средой. Пирометром называют бесконтактный термометр, действие которого основано на использовании теплового излучения нагретых тел. Термокомплектом называют измерительную установку, состоящую из термометра, не имеющего собственной шкалы, и вторичного прибора, преобразующего выходной сигнал термометра в численную величину.

2 Температурные шкалы

Первым устройством, созданным для измерения температуры, считают водяной термометр Галилея (1597 г.). Термометр Галилея не имел шкалы и был, по существу, лишь индикатором температуры. Полвека спустя, в 1641 г., неизвестным для нас автором был изготовлен термометр со шкалой, имеющей произвольные деления. Спустя еще полвека Ренальдини впервые предложил принять в качестве постоянных точек, характеризующих тепловое равновесие, точки плавления льда и кипения воды. При этом температурной шкалы еще не существовало. Первая температурная шкала была предложена и осуществлена Д.Г. Фаренгейтом (1724 г). Температурные шкалы устанавливались произвольным выбором нулевой и других постоянных точек и произвольным принятием интервала температуры в качестве единицы. Фаренгейт не был ученым. Он занимался изготовлением стеклянных приборов. Ему стало известно, что высота столба ртутного барометра зависит от температуры. Это навело его на мысль создать стеклянный ртутный термометр с градусной шкалой. В основу своей шкалы он положил три точки: 1 - "точка сильнейшего холода (абсолютный нуль)", получаемая при смешениях в определенных пропорциях воды, льда и нашатыря, и принятая им за нулевую отметку (по нашей современной шкале, равная примерно -17,8°С); 2- точка плавления льда, обозначенная им +32°, и 3 - нормальная температура человеческого тела, обозначенная +96° (по нашей шкале +35,6°С). Температура кипения воды первоначально не нормировалась и лишь позднее была установлена +212° (при нормальном атмосферном давлении).

Через несколько лет, в 1731 г. Р.А. Реомюр предложил использовать для стеклянных термометров спирт такой концентрации, который при температуре плавления льда заполнял бы объем в 1000 объемных единиц, а при температуре кипения расширялся бы до 1080 единиц. Соответственно температуру плавления льда Реомюр предложил первоначально обозначить 1000°, а кипения воды 10800 (позднее 0° и 80°).

В 1742 г. А. Цельсий, используя ртуть в стеклянных термометрах, обозначил точку плавления льда за 100°, а точку кипения воды за 0°. Такое обозначение оказалось неудобным и спустя 3 года Штремер (или возможно К. Линней) предложил изменить обозначения, принятые вначале Цельсием, на обратные. Был предложен и ряд других шкал. М. В. Ломоносов предложил жидкостный термометр со шкалой 150° в интервале от точки плавления льда до точки кипения воды.

И.Г. Ламберт (1779 г.) предлагал воздушный термометр со шкалой 375°, принимая за 1° одну тысячную часть расширения объема воздуха. Известны также попытки создать термометры на основе расширения твердых тел (П. Мушен-брук, 1725 г.)

Все предлагаемые температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связано с температурой. Но в дальнейшем выяснилось, что термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.

В 1848 г. Кельвин (У. Томсон) предложил построить температурную шкалу на термодинамической основе, приняв за нулевое значение температуру абсолютного нуля и обозначив температуру плавления льда +273,1°. Термодинамическая температурная шкала базируется на втором законе термодинамики. Как известно, работа в цикле Карно пропорциональна разности температур и не зависит от термометрического вещества. Один градус по термодинамической шкале соответствует такому повышению температуры, которое отвечает 1/100 части работы по циклу Карно между точками плавления льда и кипения воды при нормальном атмосферном давлении. Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.

По мере расширения научных наблюдений и развития промышленного производства возникла естественная необходимость установить какую-то единую температурную шкалу. Первая попытка в этом направлении была предпринята в 1877 г., когда Международный комитет мер и весов принял в качестве основной температурной шкалы стоградусную водородную шкалу. За нулевую отметку была принята точка таяния льда, а за 100° - точка кипения воды при нормальном атмосферном давлении 760 мм. рт. ст. Температура определялась по давлению водорода в постоянном объеме. Нулевая отметка соответствовала давлению 1000 мм. рт. ст. Градусы температуры по этой шкале очень близко совпадали с градусами термодинамической шкалы, однако практическое применение водородного термометра ограничивалось из-за небольшого интервала температур примерно от -25 до +100°. В начале XX в. широко применялись шкалы Цельсия (или Фаренгейта - в англо-американских странах) и Реомюра, а в научных работах - также шкалы Кельвина и водородная.

1.3 Международная температурная шкала

При резко возросших потребностях в точной оценке температуры пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому после нескольких лет подготовки и предварительных временных решений VIII Генеральная конференция мер и весов приняла в 1933 г. решение о введении Международной температурной шкалы (МТШ). Это решение было в законодательном порядке утверждено большинством развитых стран мира. В СССР Международная температурная шкала была введена с 1 октября 1934 г. (Общесоюзный стандарт ОСТ ВКС 6954).

Международная температурная шкала является практическим осуществлением термодинамической стоградусной температурной шкалы, у которой температура плавления льда и температура кипения воды при нормальном атмосферном давлении соответственно-обозначены через 0° и 100°. МТШ основывается на системе постоянных, точно воспроизводимых температур равновесия (постоянных точек), которым присвоены числовые значения. Для определения промежуточных температур служат интерполяционные приборы, градуированные по этим постоянным точкам. Температуры, измеряемые по международной шкале, обозначаются через СС. В отличие от градусов шкалы Цельсия - базирующейся также на точках плавления льда и кипения воды при нормальном атмосферном давлении и имеющей обозначения 0° и 100°С, но построенной на иной основе (на линейной зависимости между температурой и расширением ртути в стекле), градусы по международной шкале стали называть "градусами международными" или "градусами стоградусной шкалы". Основные постоянные точки МТШ и присвоенные им числовые значения температур при нормальном атмосферном давлении приводятся ниже: (так же см. рис. №1):

а) температура равновесия между жидким и газообразным кислородом (точка кипения кислорода) - 182,96°

б) температура равновесия между льдом и водой, насыщенной воздухом (точка плавления льда) 0.000°

в) температура равновесия между жидкой водой и ее паром (точка кипения воды) 100,000°

г) температура равновесия между жидкой серой и ее паром (точка кипения серы) 414,60°

д) температура равновесия между твердым и жидким серебром (точка затвердевания серебра) 961.93°

е) температура равновесия между твердым и жидким золотом (точка затвердевания золота) 1064,43°

Рис. № 1 Международная температурная шкала

2. Методы измерения температуры

Для определения значения температуры какого-либо тела необходимо выбрать эталон температуры, то есть тело, которое при определённых условиях, равновесных и достаточно легко воспроизводимых, имело бы определённое значение температуры. Это значение температуры является реперной точкой соответствующей шкалы температур - упорядоченной последовательности значений температуры, позволяющей количественно определять температуру того или иного тела. Температурная шкала позволяет косвенным образом определять температуру тела путем прямого измерения какого-либо его физического параметра, зависящего от температуры.

Наиболее часто при получении шкалы температур используются свойства вода. Точки таяния льда и кипения воды при нормальном атмосферном давлении выбраны в качестве реперных точек в современных (но не обязательно изначальных) температурных шкалах, предложенных Андерсом Цельсием (1701-1744), Рене Антуаном Фершо Реомюром (1683 - 1757), Даниэлем Габриэлем Фаренгейтом (1686-1736). Последний создал первые практически пригодные спиртовой и ртутный термометры, широко используемые до сих пор. Температурные шкалы Реомюра и Фаренгейта применяют в настоящее время в США, Великобритании и некоторых других странах.

Введенную в 1742 году температурную шкалу Цельсия, который предложил температурный интервал между температурами таяния льда и кипения воды при нормальном давлении (1 атм или 101 325 Па) разделить на сто равных частей (градусов Цельсия), широко используют и сегодня, правда в уточненном виде, когда один градус Цельсия считается равным одному кельвину. При этом температура таяния льда берется равной 0 °C, а температура кипения воды становится приблизительно равной 99,975 °C. Возникающие при этом поправки, как правило, не имеют существенного значения, так как большинство используемых спиртовых, ртутных и электронных термометров не обладают достаточной точностью (поскольку в этом обычно нет необходимости). Это позволяет не учитывать указанные, очень небольшие поправки.

После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы. Первая шкала - термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Эта температурная шкала подробно рассмотрена в третьей главе. Отметим только, что единицей измерения температуры в этой температурной шкале является один кельвин (1 К), одна из семи основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина) (1824-1907), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия. Вторая рекомендованная температурная шкала - международная практическая. Эта шкала имеет 11 реперных точек - температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1 К.

В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273,16 К при давлении 609 Па.

Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина - легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.

Тело, с помощью измерения термометрического признака которого осуществляется измерение температуры, называется термометрическим телом.

Термометрическими признаками могут быть изменения: объёма газа или жидкости, электрического сопротивления тел, разности электрического потенциала на границе раздела двух проводящих тел и т.д. Соответствующие этим признакам приборы для измерения температуры (термометры) будут: газовый и ртутный термометры, термометры, использующие в качестве датчика термосопротивление или термопару.

По принципу действия все термометры делятся на следующие группы, которые используются для различных интервалов температур:

Термометры расширения от - 260 до +700 °С, основанные на изменении объемов жидкостей или твердых тел при изменении температуры.

Манометрические термометры от - 200 до +600 °С, измеряющие температуру по зависимости давления жидкости, пара или газа в замкнутом объеме от изменения температуры.

Термометры электрического сопротивления стандартные от -270 до +750 °С, преобразующие изменение температуры в изменение электрического сопротивления проводников или полупроводников.

Термоэлектрические термометры (или пирометры), стандартные от -50 до +1800 °С, в основе преобразования которых лежит зависимость значения электродвижущей силы от температуры спая разнородных проводников.

Пирометры излучения от 500 до 100000 °С, основанные на измерении температуры по значению интенсивности лучистой энергии, испускаемой нагретым телом,

Термометры, основанные на электрофизических явлениях от -272 до +1000 °С (термошумовые термоэлектрические преобразователи, объемные резонансные термопреобразователи, ядерные резонансные термопреобразователи).

1 Контактный метод измерения температуры

Существуют два основных способа для измерения температур - контактные и бесконтактные. Контактные способы основаны на непосредственном контакте измерительного преобразователя температуры с исследуемым объектом, в результате чего добиваются состояния теплового равновесия преобразователя и объекта. Этому способу присущи свои недостатки. Температурное поле объекта искажается при введении в него термоприемника. Температура преобразователя всегда отличается от истинной температуры объекта. Верхний предел измерения температуры ограничен свойствами материалов, из которых изготовлены температурные датчики. Кроме того, ряд задач измерения температуры в недоступных вращающихся с большой скоростью объектах не может быть решен контактным способом.

Газовый термометр постоянного объёма (рис. № 2) состоит из термометрического тела - порции газа, заключенной в сосуд, соединенный с помощью трубки с манометром. Измеряемая физическая величина (термометрический признак), обеспечивающая определение температуры, - давление газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки уровень в правой трубке манометра доводится до одного и того же значения (опорной метки) и в этот момент производится измерения разности высот уровней жидкости в манометре. Учет различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объема, равной одной тысячной кельвина.

Рис. № 2 Схема газового термометра

Газовые термометры имеют то преимущество, что температура, определяемая с их помощью, при малых плотностях газа не зависит от природы используемого газа, а шкала газового термометра - хорошо совпадает с абсолютной шкалой температур.

Газовые термометры используют для градуировки других видов термометров, например, жидкостных. Они более удобны на практике, однако, шкала жидкостного термометра, проградуированного по газовому, оказывается, как правило, неравномерной. Это связано с тем, что плотность жидкостей нелинейным образом зависит от их температуры.

Жидкостной термометр (рис. № 3) - это наиболее часто используемый в обыденной жизни термометр, основанный на изменении объёма жидкости при изменении её температуры. В ртутно-стеклянном термометре термометрическим телом является ртуть, помещенная в стеклянный баллон с капилляром. Термометрическим признаком является расстояние от мениска ртути в капилляре до произвольной фиксированной точки. Ртутные термометры используют в диапазоне температур от -35 oC до нескольких сотен градусов Цельсия.

Рис. № 3 Схема жидкостного термометра

а - комнатный термометр с наружной шкалой;

б - лабораторный термометр с вложенной шкалой, имеющий на шкале точку 0°С.

Другими видами широко распространённых жидкостных термометров являются спиртовой (от -8 °C до +8 °C) и пентановый (от -200 °C до +35°C). Отметим, что воду нельзя применять в качестве термометрического тела в жидкостном термометре: объём воды с повышением температуры сначала падает, а потом растёт, что делает невозможным использование объема воды в качестве термометрического признака.

С развитием измерительной техники, наиболее удобными техническими видами термометров стали те, в которых термометрическим признаком является электрический сигнал. Это термосопротивления (металлические и полупроводниковые) и термопары.

В металлическом термометре сопротивления измерение температуры основано на явлении роста сопротивления металла с ростом температуры. Для большинства металлов вблизи комнатной температуры эта зависимость близка к линейной, а для чистых металлов относительное изменение их сопротивления при повышении температуры на 1 К (температурный коэффициент сопротивления) имеет величину близкую к 4*10-3 1/К. Термометрическим признаком является электрическое сопротивление термометрического тела - металлической проволоки. Чаще всего используют платиновую проволоку, а также медную проволоку или их различные сплавы. Диапазон применения таких термометров от водородных температур (~20 К) до сотен градусов Цельсия. При низких температурах в металлических термометрах зависимость сопротивления от температуры становится существенно нелинейной, и термометр требует тщательной калибровки.

В полупроводниковом термометре сопротивления (термисторе) измерение температуры основано на явлении уменьшения сопротивления полупроводников с ростом температуры. Так как температурный коэффициент сопротивления полупроводников по абсолютной величине может значительно превосходить соответствующий коэффициент металлов, то и чувствительность таких термометров может значительно превосходить чувствительность металлических термометров.

Специально изготовленные полупроводниковые термосопротивления могут быть использованы при низких (гелиевых) температурах порядка нескольких кельвин. Однако следует учитывать то, что в обычных полупроводниковых сопротивлениях возникают дефекты, обусловленные воздействием низких температур. Это приводит к ухудшению воспроизводимости результатов измерений и требует использования в термосопротивлениях, специально подобранных полупроводниковых материалов.

Другой принцип измерения температуры реализован в термопарах. Термопара (рис. № 4) представляет собой электрический контур, спаянный из двух различных металлических проводников, один спай которых находится при измеряемой температуре (измерительный спай), а другой (эталонный спай) - при известной температуре, например, при комнатной температуре. Из-за разности температур спаев возникает электродвижущая сила (термо-ЭДС), измерение которой позволяет определять разность температур спаев, а следовательно, температуру измерительного спая.

В таком термометре термометрическим телом является спай двух металлов, а термометрическим признаком - возникающая в цепи термо-ЭДС. Чувствительность термопар составляет от единиц до сотен мкВ/К, а диапазон измеряемых температур от нескольких десятков кельвин (температуры жидкого азота) до полутора тысяч градусов Цельсия. Для высоких температур применяются термопары из благородных металлов. Наибольшее применение нашли термопары на основе спаев следующих материалов: медь-константан, железо-константан, хромель-алюмель, платинородий - платина.

Рис. № 4 Схема термопары

Следует отметить, что термопара способна измерить только разность температур измерительного и свободного спаев. Свободный спай находится, как правило, при комнатной температуре. Поэтому для измерения температуры термопарой необходимо использовать дополнительный термометр для определения комнатной температуры или систему компенсации изменения температуры свободного спая.

В радиотехнике часто применяют понятие шумовой температуры, равной температуре, до которой должен быть нагрет резистор, согласованный с входным сопротивлением электронного устройства, чтобы мощность тепловых шумов этого устройства и резистора были равными в определенной полосе частот. Возможность введения такого понятия обусловлена пропорциональностью средней мощности шума (среднего квадрата шумового напряжения на электрическом сопротивлении) абсолютной температуре сопротивления. Это позволяет использовать шумовое напряжение в качестве термометрического признака для измерения температуры. Шумовые термометры используются для измерения низких температур (ниже нескольких кельвинов), а также в радиоастрономии для измерения радиационной (яркостной) температуры космических объектов

2 Бесконтактный метод измерения температуры

Бесконтактный способ основан на восприятии тепловой энергии, передаваемой через лучеиспускание и воспринимаемой на некотором расстоянии от исследуемого объема. Этот способ менее чувствителен, чем контактный. Измерения температуры в большой степени зависят от воспроизведения условий градуировки при эксплуатации, а в противном случае появляются значительные погрешности. Устройство, служащее для измерения температуры путем преобразования ее значений в сигнал или показание, называется термометром (ГОСТ 13417-76).- это термоэлементы, включенные последовательно, которые используют известный Seebeck - эффект. Термоэлемент состоит из двух электропроводных материалов, которые расположены в виде проводящих дорожек и которые в одной точке (так называемой hot junction) контактируют друг с другом. Если за счет внешнего воздействия возникнет разница температур между точкой контакта (hot junction) и обеими открытыми концами (cold junction), то на обоих концах термоэлементов появится напряжение в несколько милливольт.

При бесконтактном способе измерения температуры повышение температуры точки «hot junction» вызывается за счет абсорбирования попадающего в эту точку инфракрасного излучения. Каждый объект излучает инфракрасный свет, причем энергия этого света повышается с повышением температуры объекта. Базируясь на этом эффекте Thermopile-модули измеряют излучаемую мощность и таким образом с высокой точностью определяют температуру объекта.

3 Люминесцентный метод измерения температуры

В основе люминесцентных методов измерения температуры лежит температурная зависимость интенсивности люминесцентного излучения некоторых люминофоров, которое находит применение в различных датчиках измерения температуры и термопокрытиях.

Современные волоконно-оптические датчики позволяют измерять многие характеристики лабораторных и промышленных объектов, в частности температуру. Не смотря на то, что их использование достаточно трудоемко, оно дает ряд преимуществ, использования подобных датчиков на практике: безындукционность (т.е. неподверженность влиянию электромагнитной индукции); малые размеры датчиков, эластичность, механическая прочность, высокая коррозийная стойкость и т.д.

Датчик на основе теплового излучения. В качестве устройств для измерения температуры могут быть использованы волоконно-оптические датчики на основе теплового излучения, сущность которых состоит в следующем. Изучаемое вещество при температуре большей 0 К вследствие тепловых колебаний атомов и молекул испускает тепловое излучение. Энергия излучения увеличивается по мере повышения температуры, а длина волны, на которой излучение максимально, уменьшается. Соответственно для определения температуры можно использовать формулу Планка для энергии теплового излучения черного тела на фиксированной длине волны или в диапазоне волн.

Основным преимуществом данного способа является возможность бесконтактного измерения высоких температур. В зависимости от диапазона измеряемых температур выбирают световые детекторы и оптические волокна. Область измерения температур для волоконно-оптических датчиков излучения находится в пределах от 400 до 2000 °С. При использовании оптических волокон, прозрачных для инфракрасных лучей с длиной волны 2 мкм и более, можно осуществлять измерение и более низких температур.

Датчик на основе поглощения света полупроводником. Известны также волоконно-оптические датчики, работа которых основана на оптических свойствах некоторых полупроводников. Используемый полупроводник имеет граничную длину волны спектра оптического поглощения. Для света с более короткой длиной волны, чем у проводника, поглощение усиливается, причем по мере роста температуры граничная длина волны отодвигается в сторону более длинных волн (около 3 нм/К). При подаче на полупроводниковый кристалл луч от источника света, имеющего спектр излучения в окрестности указанной границы спектра поглощения, интенсивность света, проходящего через светочувствительную часть датчика, с повышением температуры будет падать. По выходному сигналу детектора, указанным методом можно регистрировать температуру.

Используя данный метод можно мерить температуру в интервале от 30 до 300 °С с погрешностью ±0,5 °С.

Датчик на основе флуоресценции. Данный датчик устроен следующим образом. На торец оптического волокна светочувствительной части нанесено флуоресцентное вещество. Флуоресцентное излучение, возникающее под воздействием ультрафиолетовых лучей, проводимых оптическим волокном, принимается этим же волокном. Температурный сигнал выявляется путем вычисления отношения соответствующих значений интенсивности флуоресцентного излучения для сигнала с длиной волны, сильно зависящего от температуры к интенсивности сигнала с другой длиной волны, слабо зависящего от температуры.

Область измеряемых температур таким датчиком находится в пределах от -50 до 200 °С с погрешностью ±0,1 °С.

Использование волоконно-оптических датчиков, при всей своей привлекательности, позволяет производить измерение температуры только в локальной точке объекта, что несколько сужает область их применения.

Заключение

Температура является одним из основных параметров, подлежащих контролю со стороны систем автоматического управления металлургическими процессами. В условиях агрессивных сред и высоких температур, наиболее подходящими для использования являются фотоэлектрические пирометры. Они позволяют контролировать температуру от 100 до 6000 °С и выше. Одним из главных достоинств данных устройств является отсутствие влияния температурного поля нагретого тела на измеритель, так как в процессе измерения они не вступают в непосредственный контакт друг с другом. Так же фотоэлектрические пирометры обеспечивают непрерывное автоматическое измерение и регистрацию температуры, что позволяет использовать их в системах автоматического управления процессами без дополнительных затрат на приобретение и обслуживание устройств сопряжения.

Представленный в работе обзор люминесцентных методов измерения температуры по сравнению с контактными методами обладает теми же преимуществами, что и оптические методы. В то же время он является менее сложным при организации процесса изучения температуры и не менее точным по сравнению с другими оптическими методами. Кроме того, использование свойств люминесценции делает возможным разработку методов измерения температурных полей объектов сложной геометрической формы.

Из вышеприведенного обзора очевидна необходимость дальнейшей разработки и совершенствования технологий измерения температуры с использованием люминесцентных методов.

температура термометр люминесцентный

Литература

1.Преображенский, В.П. Теплотехнические измерения и приборы. / В.П. Преображенский - М.: Энергия, 1978. - С. 704

Чистяков, С.Ф., Радун Д. В. Теплотехнические измерения и приборы. / С.Ф. Чистяков - М.: Высшая школа, 1972. - С. 392

Никоненко, В.А., Сильд Ю.А., Иванов И.А. Разработка системы метрологического обеспечения измерительных тепловизорных приборов. - Измерительная техника, № 4, 2004. - С. 48-51

Измерения в промышленности: Справ. Изд.

Механические термометры основаны на явлении теплового расширения тел. Эти тела могут быть твердыми, жидкими или газообразными.

Механические термометры отличаются надежностью, точностью, низкой стоимостью и простотой обслуживания. Считывание показаний с них, как правило, осуществляется на месте измерения.

В машиностроении применяют биметаллические, жидкостные и газовые термометры.

В биметаллических термометрах чувствительный элемент изготавливается из пластины, состоящей из двух или более слоев разнородных металлов, сваренных между собой по всей плоскости соприкосновения. Пластина может быть предварительно деформирована.

При нагреве биметаллической пластины из-за различия коэффициентов линейного расширения ее слоев возникает деформация изгиба, пропорциональная изменению температуры.

Рис. 6.1. Биметаллические измерительные преобразователи температуры

Варианты а и б используются в качестве реле температуры, в и г - для непосредственно­го отсчета показаний термометров. Для этого один конец чувствительного элемента закрепляется, а второй соединяется с передаточным или непосредственно с показывающим устройством. Диапазон измерения биметаллических термометров лежит в интервале от -50 до 600 °С. Погрешность измерения- от ±1 до ±3%.

В жидкостных термометрах измеряемой величиной, характеризующей температуру, является изменение объема термометрической жидкости. Термобаллон, в котором находится основная часть жидкости, изготавливается из стекла или стали. К термобаллону подключен капилляр диаметром 0,1... 0,2 мм. В качестве жидкости используется этиловый спирт, ртуть и толуол. Погрешность измерений от ±2% до ±0,5%.

Основными недостатками механических термометров являются значительная инерционность и сложность объединения с другими информационными сигналами для дальнейшей обработки.

Электрические контактные термометры подразделяются на две группы:

· термометры сопротивления;

· термоэлектрические термометры (термопары).

В термометрах сопротивления при изменении температуры изменяется активное сопротивление чувствительного элемента.

У металлических проводников сопротивление обычно возрастает с повышением температуры, а у полупроводниковых - падает.

Чаще всего применяются платиновые или медные термометры сопротивления.

Область применения технических платиновых термометров 260... 1100°С.

Медные термометры могут работать в интервале температур от 50 до 200 °С.

Погрешность металлических термометров сопротивления в зависимости от исполнения составляет от ±0,5% до ±3%

Полупроводниковые термометры сопротивления выпускаются для измере­ния температуры в диапазоне от 200 до 300 °С.

Погрешность полупроводниковых термометров сопротивления 0,5%. За счет специального отбора и индивидуальной градуировки можно снизить погрешность полупроводниковых термометров сопротивления до ±0,01 °С

Рис. 6.2. - Схема измерительной цепи термометра сопротивления

Три плеча моста составляют манганиновые резисторы R1, R2 и RЗ. Четвертое плечо состоит из преобразователя термометра RК и подгоночных резисторов (на схеме не показанных). Последовательное соединение каждого из подводящих проводов соответственно с резисторами R1 и RЗ позволяет автоматически компенсировать влияние колебаний их температуры на результат измерения. Показания логометра, рамки которого. 1 и 2 подключены к двум точкам моста непосредственно и к одной через резистор R4, пропорциональны изменению сопротивления преобразователя температуры RК.

Принцип действия термоэлектрического термометра (термопары) основан на термоэлектрическом явлении, в результате которого в цепи, состоящей из двух разнородных проводников, возникает термо-э.д.с, зависящая от температуры в местах соединений этих проводников.

Для измерения температуры одно из соединений разнородных проводников (рабочие концы) помещают в среду, температуру которой измеряют, а температура другого соединения (свободных концов) известна. Свободные концы термоэлектрического термометра нужно располагать в месте, удобном для стабилизации или измерения температуры.

Зависимость между термо-э.д.с. и разностью температур рабочих и свобод­ных концов в общем случае является нелинейной и может быть аппроксимирована уравнением третьей степени. Если сузить диапазон измеряемых температур, то характеристики многих термопар могут быть линеаризированы без большого ущерба для точности измерений.

Рис. 6.3. – Характеристика наиболее употребительных

термоэлектрических преобразователей:

1 – хомель – копель; 2 – железо – константан;

3 – хромель - алюмель; 4 – платинородий – платина

таблица 6.1

Характеристики термоэлектрических преобразователей

Все нестандартные средства измерения температур требуют индивидуальной градуировки. Примером является измерение температуры в зоне резания естественной термопарой . Точность измерений 7-10%.

Рис. 6.4. – Схема комбинированного тарирования естественной термопары:

а – схема установки; б – тарировочный график

Рис. 6.5. – Схема однорезцовой естественной термопары

Рис. 6.6. – Схема полуискусственной термопары

Полуискусственная термопара может быть получена и при установке одного из проводников в шлифовальный инструмент. Между двумя плотно притертыми друг к другу половинками шлифовального круга 4 и 2 укладывается фольга 3 толщиной 0,01...0,05 мм, которая образует с деталью 1 полуискусственную термопару с тонким спаем, равным по длине ширине зоны шлифования (1,5...3 мм).

Сигнал термопары, соответствующий средней температуре зоны контакта, через ртутный токосъемник 5 попадает в усилитель 6 и затем в регистрирующий прибор 7. Преимуществом такой термопары является непрерывность и устойчивость сигнала.

Бесконтактные методы измерения температуры

Поверхность всякого нагретого тела испускает электромагнитное излучение. Приборы, которые могут по тепловому излучению определять температуру излучателя, называются пирометрами. При помощи оптики излучение нагретого тела фокусируется и направляется на приемник.

Различают следующие виды приемников теплового излучения: термопары, термометры сопротив­ления, фотоэлементы, фоторезисторы, фотодиоды и фототранзисторы.

Пирометрические оптические устройства создают изображение излучаю­щей поверхности (или ее участка) на приемнике и тем самым делают измере­ние потока излучения в широком диапазоне независимым от расстояния до изучаемого объекта.

Рис. 6.7. – схема фотоэлектрического цветового пирометра

Излучение от объекта исследования 1 линзой 2 фокусируется на обтюраторе 3, который вращается синхронным электродвигателем 4, и затем воспринимается фотоэлементом 5. На диске обтюратора имеется ряд отверстий, половина которых закрыта красным свето­фильтром, а половина - синим. Таким образом, на фотоэлемент поочередно попадают то красные, то синие лучи. Кроме того, благодаря отверстиям фототок оказывается промодулированным с несущей частотой, определяемой числом отверстий в обтюраторе и частотой вращения последнего. Модулированный ток в нагрузке фотоэлемента через усилитель 6, который снабжен устройством 7 для автоматической регулировки чувствительности, поступает в фазочузствительный выпрямитель 8. После этого с помощью коммутатора 9 сигнал разделяется соответственно отношению интенсивностей красных и синих лучей и воспринимается измерителем отношения 10.

Фотоэлектрические цветовые пирометры могут обеспечить измерение температуры с погрешностью, не превышающей 1 %

Инфракрасные пирометры компании RAYTEK позволяют измерять температуру в диапазоне от – 50°С до + 3000°С на больших расстояниях и применяются во всех отраслях промышленности.

Основные области применения:

· Производственные процессы

· Техническое обслуживание и диагностика

· Безопасность и защита

· Производство сталей и сплавов

· Целлюлозно-бумажная промышленность

· Производство пластмасс, стекла

· Пищевая промышленность

· Энергетика

· Неисправности электрических цепей

· Диагностика двигателей, редукторов, подшипников

· Диагностика систем зажигания и охлаждения

· Местонахождение воспламенений

· Контроль опасных материалов

· Поисково-спасательные работы

Рис. 6.8. - Портативные инфракрасные пирометры

Инфракрасные пирометры используются для диагностики производственного оборудования.

Рис. 6.9. - Поиск неисправности обмотки и контактных соединений

Рис. 6.10. - Проверка движущихся деталей на предмет износа и смазки

Рис.6.11. - Оценка степени износа подшипников до их полного повреждения

Рис. 6.12. - Диагностика двигателя автомобиля

Волоконно-оптические пирометры специально предназначены для проведения измерений в неблагоприятных условиях вторичной зоны охлаждения.

Рис. 6.13. – Внешний вид волоконно-оптических пирометров

Армированная оплетка с воздушным охлаждением защищает волоконно-оптический кабель от загрязнения и перегрева. Объектив, размещенный в корпусе из нержавеющей стали, можно приблизить к заготовке на расстояние до нескольких сантиметров.

Рис. 6.14. - Тепловизоры

Рис. 6.15. - Обнаружительные тепловизоры (охрана)

Цветовые индикаторы температуры (термоиндикаторы) - это вещества, изменяющие свой цвет в зависимости от температуры. По принципу действия термоиндикаторы подразделяются на четыре основных типа: термохимические; плавления; жидкокристаллические; люминесцентные.

Термохимические индикаторы - сложные вещества, которые при достижении определенной температуры резко изменяют свой цвет за счет химического взаимодействия компонентов. Они обеспечивают точность измерения температуры в пределах от 5 до 10 °С.

Термоиндикаторы плавления изменяют цвет в результате плавления одного или нескольких их компонентов, имеющих строго определенную температуру плавления. Погрешность измерения температуры этими индикаторами составляет 0,5... 1,5,. реже 2,5%.

Жидкокристаллические термоиндикаторы - вещества, которые в определенном интервале температур переходят в жидкокристаллическое состояние, обладающие свойством при незначительном изменении температуры так изменять свою структуру, что падающий на них луч света разлагается и отражается с изменением цвета.

Люминесцентные термоиндикаторы в зависимости от температуры изменяют либо яркость, либо цвет, либо цветовой тон излучения.

Погрешность измерения температуры термоиндикаторами двух последних типов составляет 0,1...0,5%.

По способности к физико-химическим превращениям термоиндикаторы делятся на три группы:

· Обратимые;

· Необратимые;

· Квазиобратимые.

К обратимым относятся термоиндикаторы, которые, изменяя цвет после нагревания восстанавливают первоначальный цвет при понижении температуры ниже критической. Такие термоиндикаторы можно использовать многократно.

Необратимые индикаторы указанным свойством не обладают, и их первоначальный цвет после охлаждения не восстанавливается. Квазиобратимые термоиндикаторы восстанавливают первоначальный цвет при понижении температуры постепенно, под воздействием влаги, имеющейся в воздухе. Их также можно использовать многократно.

Термоиндикаторы плавления являются только необратимыми, а жидко­кристаллические и люминесцентные-- обратимыми. Термохимические индикаторы могут быть обратимыми, необратимыми и квазиобратимыми.

Термоиндикаторы наносятся на поверхность объекта исследования в виде тонкой пленки.

Рассмотрим следующие методы измерения температуры: объ­емный, манометрический, терморезисторный (метод термосопро­тивлений), термоэлектрический и пирометрический.

1. Объемный метод ,

Объемный метод измерения температуры основан на тепловом расширении (изменении объема) различных тел. По этому прин­ципу строятся дилатометрические, биметаллические и жидкост­ные термометры.

Дилатометрический термометр (рис. 7.1) состоит из патрона 1 и штока 2, изготовленных из материалов с различ­ными коэффициентами линейного расширения и .

Для повышения чувствительности необходимо применять ма­териалы, у которых и возможно больше отличаются друг от друга, в то же время коэффициент линей­ного расширения материала штока следует выбирать близким к нулю для умень­шения теплового запаздыва­ния, обусловленного тем, что шток прогревается мед­леннее, чем патрон (патрон непосредственно соприка­сается со средой, темпера­тура которой измеряется, а шток отделен от нее воз­душной прослойкой). Исходя из этого шток целесообразно изго­товлять из сплава типа инвар ( =l*10- 6), a патрон - из мате­риала с большим , например из дуралюмина ( = 23-10~ 6).

Ввиду малости перемещения штока (десятые доли мм) ди­латометрический термометр содержит передаточно-множительный механизм, увеличивающий перемещение штока до величины, удобной для отсчета.

Биметаллические термометры (рис. 7.2) так же, как и дилатометрические, основаны на тепловом расширении твердых тел и отличаются лишь способом соединения компонент Теплочувствительный элемент представляет собой биметалличе­скую пластину, состоящую из двух сваренных или сплавленных (реже спаянных) по всей длине пластин с различными коэффи­циентами линейного расширения и . При нагревании биме­таллическая пластина изгибается таким образом, что ее выпук­лость образуется со стороны материала с большим .

Угол изгиба биметаллической пластины определяется фор­мулой ,

где l - длина биметаллической пластины;

h - суммарная толщина биметаллической пластины;

Величина изменения температуры.

Линейное перемещение прямой консольно закрепленной пла­стины

,

где - чувствительность.

В авиационных приборах применяют биметаллические пла­стины, состоящие из стали ( = 19 10 -6) и инвара ( =1 10 -6).

По сравнению с дилатометрическим элементом биметалличе­ский элемент дает большее перемещение при меньших габаритах, что позволяет уменьшить передаточное отношение механизма.

При выполнении биметаллического чувствительного элемента в виде спиральной или винтовой пластины (см. рис. 7.2,6, в), один конец которой закреплен неподвижно, а другой - связан с выходной осью, можно получить большой угол поворота вы­ходной оси (до 360°), что позволяет поместить указывающую стрелку непосредственно на эту ось и исключить из конструк­ции термометра передаточно-множительный механизм.


Биметаллические термометры подобного рода применяются для измерения температуры окружающей среды (см. рис. 7.2, г).

Жидкостные термометры действуют на основе тепло­вого изменения объема жидкостей.

Схемы двух вариантов жидкостных термометров показаны на рис. 7.3.

Жидкостный термометр (см. рис. 7.3, а) состоит из цилиндри­ческого баллона 1 , внутрь которого впаян сильфон 2. Свободный конец сильфона связан со штоком 3, выпущенным наружу бал­лона, а пространство между стенками сильфона и баллона за­полнено жидкостью. Баллон помещается в среду, температура

которой измеряется. Объем жидкости зависит от температуры следующим образом:

,

где - начальный объем жидкости при 0 0 С,

Коэффициент объемного расширения жидкости,

Температура в 0 С.

Значения для некоторых жидкостей приведены в таблице 7.1.

Линейное перемещение конца штока при нагревании элемента от 0 0 С до температуры С определяется выражением

где F- эффективная площадь сильфона.

Увеличение жесткости сильфона приводит к увеличению дав­ления внутри системы, что, однако, не влияет на величину s ра­бочего хода. Вследствие практической несжимаемости жидкости величина s определяется приращением объема жидкости и эф­фективной площадью сильфона. В то же время увеличение жест­кости сильфона позволяет повысить верхний предел измерения, так как температура кипения жидкости увеличивается с увеличе­нием давления.

Жидкостный термометр дистанционного типа (см. рис. 7.3, б) состоит из заполненного жидкостью баллона, погруженного в сре­ду, температура которой измеряется, и соединенного капиллярной трубкой с упругим чувствительным элементом (сильфоном, мано­метрической коробкой или трубчатой пружиной), перемещение которого через передаточно-множительный механизм передается на указывающую стрелку. Показания дистанционного жидкост­ного термометра подвержены влиянию температуры воздуха, ок­ружающего соединительную трубку и указатель. Погрешность пропорциональна объему соединительной трубки и упругого чув­ствительного элемента.

2. Манометрический метод ,

Манометрический метод измерения температуры основан на тепловом изменении давления газа (пара) внутри замкнутого объема. По этому методу действуют газовые и парожидкостные термометры.

Схемы газовых термометров подобны схемам жидкостных термометров. Различие состоит в том, что внутренняя полость теплочувствительного элемента заполняется вместо жидкости инертным газом.

Вследствие сжимаемости газа действие газового термометра принципиально отличается от действия жидкостного термометра: газовый термометр работает не на принципе расширения рабо­чего тела, а на принципе изменения его давления. В жидкостном термометре рабочий ход сильфона благодаря практической не­сжимаемости жидкости определяется тепловым приращением объема жидкости и эффективной площадью сильфона и не зави­сит от жесткости сильфона, в то время как давление жидкости пропорционально жесткости сильфона. В газовом термометре, наоборот, давление газа почти не зависит от жесткости сильфо­на (если пренебречь изменением его объема по сравнению с на­чальным объемом всей системы), а рабочий ход сильфона обрат­но пропорционален его жесткости.

В газовом термометре, построенном по схеме рис. 73, а, абсо­лютное давление газа (при условии постоянства его объема) равно

,

где - термический коэффициент давления,

р 0 – начальное давление внутри баллона при .

Перемещение центра сильфона

,

где с ж – коэффициент линейной жесткости сильфона,

р 2 – давление окружающей среды.

В газовом термометре, построенном по схеме, представленной на рис. 7.3, б, возникают погрешности при изменении давления и температуры окружающего воздуха. Для исключения влияния давления окружающей среды можно применить вместо диффе­ренциального манометра манометр абсолютного давления; для уменьшения влияния температуры окружающей среды объемы соединительной трубки и упругого чувствительного элемента должны быть как можно меньшими.

Принципиальная схема парожидкостного термометра также соответствует схеме жидкостного термометра (см. рис. 7.3), но заполняется система специальной жидкостью, кото­рая при нормальном давлении закипает при низкой температуре. К числу таких жидкостей, получивших название низкокипящих, относятся, например, метилхлорид (СН 3 С1), закипающий при -24° С (при р = 760 мм рт. ст.) и ацетон (С3Н 6 О), закипающий при + 56° С (при р = 760 мм рт. ст.).

При нагревании баллона до некоторой температуры абсолют­ное, давление в системе возрастает до определенной величины р 1 , при которой часть жидкости переходит в пар и устанавливается равновесие, при котором дальнейшее испарение жидкости пре­кращается. С уменьшением температуры часть пара конденси­руется, т. е. переходит в жидкое состояние, и давление в системе уменьшается.

Давление p 1 однозначно зависит от ; вид функциональной зависимости определяется только составом жидкости и не связан с формой и геометрическими размерами баллона и упругого чувствительного элемента.

В табл. 7.2 приведены характеристики некоторых низкокипя­щих жидкостей.

Нижний предел измерения ограничен температурой, при ко­торой весь пар переходит в жидкость и зависит от начального давления, при котором заполняется система. Верхний предел из­мерения ограничен критической температурой, выше которой давление резко возрастает и нарушается функциональная связь между р и .

3. Терморезисторный метод (метод термосопротивлений) ,

Терморезисторный метод измерения температуры основан на тепловом изменении электрического сопротивления проводников или полупроводников.

Верхний предел измеряемых температур зависит от материа­ла терморезистора. Применяются терморезисторы медные (до + 180° С), никелевые (до +300°С) платиновые (до +1250° С) и полупроводниковые (до + 180° С).

Подробнее приборы и датчики температуры, основанные на терморезисторном методе, рассматриваются в § 7.4.

4. Термоэлектрический метод ,

Термоэлектрический метод измерения температуры основан на возникновении контактного потенциала между двумя контак­тирующими между собой разнородными проводниками (или по­лупроводниками) при разности температур свободных и рабочего концов этих проводников.

Верхний предел измеряемых температур, определяемый глав­ным образом теплостойкостью термоэлектродов, достигает для хромель-копелевых термопар +800° С, платино-платинородиевых + 1600° С, вольфрам-молибденовых до 2400° С и т. д.

Подробнее приборы и датчики температуры, основанные на термоэлектрическом методе, рассматриваются в § 7.5.

5. Оптический метод

Оптический метод измерения температуры основан на зави­симости энергии, излучаемой нагретым телом, от его темпера­туры. Яркость излучения оценивается визуально с помощью оптических устройств или преобразуется в электрический сигнал с помощью чувствительных фотоэлектрических элементов. По­строенные по этому методу приборы называют пирометрами из­лучения. Различают пирометры полного излучения (радиацион­ные), пирометры частичного излучения (яркостные) и пиромет­ры цветовые (спектрального соотношения).

На летательных аппаратах нашли преобладающее примене­ние терморезисторные датчики температуры (термосопротивле­ния) и термоэлектрические датчики (термопары) благодаря сво­ей простоте, стабильности характеристик и возможности преоб­разования температуры непосредственно в электрическую вели­чину ".

Терморезисторы и термопары используются как в качестве воспринимающих устройств систем автоматического регулирова­ния и управления, так и в качестве датчиков электрических ди­станционных термометров.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Восточно-Сибирский государственный университет технологий и управления»

Кафедра «Автоматизация и электрооборудование промышленных предприятий»

Доклад на тему:

«Приборы методы и способы измерения температуры»

Улан-Удэ, 2014

Что такое температура

Температура (от лат. temperatura - надлежащее смешение, нормальное состояние) - скалярная физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Температура всех частей системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между её частями, имеющими различную температуру, происходит теплопередача (переход энергии от более нагретых частей системы к менее нагретым), приводящая к выравниванию температур в системе.

Температура относится к интенсивным величинам, не зависящим от массы системы.

Интуитивно понятие температура появилось как мера градации наших ощущений тепла и холода; на бытовом уровне температура воспринимается как параметр, служащий для количественного описания степени нагретости материального объекта.

В Международной системе единиц (СИ) термодинамическая температура используется в качестве одной из семи основных физических величин, входящих в Международную систему величин (англ. International System of Quantities, ISQ ), а её единицей является кельвин, представляющий собой, соответственно, одну из семи основных единиц СИ. Кроме термодинамической температуры в СИ используется температура Цельсия, её единицей является градус Цельсия, входящий в состав производных единиц СИ, имеющих специальные наименования и обозначения, и по размеру равный кельвину. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды - температуре таяния льда (0 °C) и температуре кипения (100 °C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном. Изменение температуры на один градус Цельсия тождественно изменению температуры на один кельвин. Поэтому после введения в 1967 г. нового определения кельвина, температура кипения воды перестала играть роль неизменной реперной точки и, как показывают точные измерения, она уже не равна 100 °C, а близка к 99,975 °C. Существуют также шкала Фаренгейта и некоторые другие.

Эмпирическая, абсолютная и термодинамическая температуры

Температура не может быть измерена непосредственно. Об изменении температуры судят по изменению других физических свойств тел (объёма, давления, электрического сопротивления, ЭДС, интенсивности излучения и др.), однозначно с ней связанных (так называемых термометрических свойств). Количественно же температура определяется указанием способа ее измерения с помощью того или иного термометра. Такое определение ещё не фиксирует ни начало отсчета, ни единицу измерения температуры, поэтому любой метод измерения температуры связан с выбором температурной шкалы. Эмпирическая температура - это температура, измеренная в выбранной температурной шкале.

В термодинамике даётся определение температуры, которое не зависит от выбора термометрического свойства, использованного для её измерения (абсолютная температура).

Абсолютную температуру, измеренную в температурной шкале Кельвина называют абсолютной термодинамической температурой, или просто термодинамической температурой.

На практике, если речь идёт о численном значении абсолютной термодинамической температуры, для краткости говорят просто об абсолютной температуре объекта.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «api-clinic.ru» — Центр естественной медицины