Строение гемоглобина. Структура, соединения и основные виды гемоглобина Глобин формула

  • 11. Обезвреживание билирубина печенью. Формула конъюгированного (прямого) билирубина
  • 12. Нарушения обмена билирубина. Гипербилирубинемия и ее причины.
  • 13. Желтухи, причины. Типы желтух. Желтуха новорожденного
  • 2. Печёночно-клеточная (печёночная) желтуха
  • 14. Диагностическое значение определения концентрации билирубина в биологических жидкостях человека при различных типах желтух
  • 15. Белки сыворотки крови. Общее содержание, функции. Отклонение в содержании общего белка сыворотки крови, причины
  • Нормальные значения общего белка сыворотки крови
  • Клиническое значение определения общего белка сыворотки крови
  • Гиперпротеинемия
  • Гипопротеинемия
  • 19)Белки острой фазы, представители, диагностическое значение
  • 20)Ренин-ангиотензивная система, состав, физиологическая роль
  • Вопрос 26. Противосвертывающая система крови. Основные первичные и вторичные природные антикоагулянты крови.
  • Вопрос 27. Фибринолитическая система крови. Механизм действия.
  • Вопрос 28. Нарушения процессов свертывания крови. Тромботические и геморрагические состояния. Двс – синдром.
  • Вопрос 29. Остаточный азот крови. Понятие, компоненты, содержание в норме. Азотемия, типы, причины возникновения.
  • Вопрос 30. Обмен железа: всасывание, транспорт кровью, депонирование. Роль железа в процессах жизнедеятельности.
  • 31. Тетрагидрофолиевая кислота, роль в синтезе и использовании одно­углеродных радикалов. Метилирование гомоцистеина.
  • 32. Недостаточность фолиевой кислоты и витамина в12. Антивитамины фолиевой кислоты. Механизм действия сульфаниламидных препаратов.
  • 34. Фенилкетонурия, биохимический дефект, проявление болезни, диаг­ностика, лечение.
  • 35. Алкаптонурия, альбинизм. Биохимический дефект, проявление бо­лезней.
  • 36. Распределение воды в организме. Водно-электролитное пространства организма, их состав.
  • 37. Роль воды и минеральных веществ в процессах жизнедеятельности
  • 38. Регуляция водно-электролитного обмена. Строение и функции альдостерона, вазопрессина и ренин-ангиотензиновой системы, механизм регулирующего действия
  • 39. Механизмы поддержания объема, состава и pH жидкостей организма.
  • 40. Гипо- и гипергидратация водно-элетролитных пространств. Причины возникновения.
  • 45.Нарушения кислотно-основного состояния. Типы нарушений. Причины и механизмы¬возникновения ацидоза и алкалоза
  • 46.Роль печени в процессах жизнедеятельности.
  • 47. Метаболическая функция печени (роль в обмене углеводов, липидов, аминокислот).
  • 48. Метаболизм эндогенных и чужеродных токсических веществ в печени: микросомальное окисление, реакции конъюгации
  • 49. Обезвреживание шлаков, нормальных метаболитов и биологически активных веществ в печени. Обезвреживание продуктов гниения
  • 50. Механизм обезвреживания чужеродных веществ в печени.
  • 51. Металлотионеин, обезвреживание ионов тяжелых металлов в печени. Белки теплового шока.
  • 52.Токсичность кислорода. Образование активных форм кислорода.
  • 53. ПОнятие о перекисном окислении липидов, повреждение мембран в результате перекисного окисления липидов.
  • 54. . Механизмы защиты от токсического действия кислорода.Антиоксидатная система.
  • 55. Основы химического канцерогенеза. Понятие о химических канцерогенах.
  • 4.Гемоглобин, строение, свойства, биологическая роль

    Гемоглобин взрослого организма является тетрамером, состоящим из двух α- и двух β-субьединиц с молекулярными массами примерно 16 кДа. α- и β-цепи отличаются аминокислотной последовательностью, но имеют сходную конформацию. Каждая субъединица несет группу гема с ионом двухвалентного железа в центре. Содержание Hb в крови составляет 140-180 г/л у мужчин и 120-160 г/л у женщин, т. е. вдвое выше по сравнению с белками плазмы (50-80 г/л). Поэтому Hb вносит наибольший вклад в образование рН-буферной емкости крови.

    Гемоглобин в качестве белкового компонента содержит глобин, а небелкового – гем. Видовые различия гемоглобина обусловлены глобином, в то время как гем одинаков у всех видов гемоглобина. Основу структуры простетической группы большинства гемосодержащих белков составляет порфириновое кольцо, являющееся в свою очередь производным тетрапиррольного соединения – порфирина.

    Атом железа расположен в центре гема-пигмента, придающего крови характерный красный цвет. Каждая из 4 молекул гема «обернута» одной полипептидной цепью. В молекуле гемоглобина взрослого человека HbА содержатся четыре полипептидные цепи, которые вместе составляют белковую часть молекулы – глобин. Две из них, называемые α-цепями, имеют одинаковую первичную структуру и по 141 аминокислотному остатку. Две другие, обозначаемые β-цепями, также идентично построены и содержат по 146 аминокислотных остатков. Таким образом, вся молекула белковой части гемоглобина состоит из 574 аминокислот. Во многих положениях α- и β-цепи содержат разные аминокислотные последовательности, хотя и имеют почти одинаковые пространственные структуры. Получены доказательства, что в структуре гемоглобинов более 20 видов животных 9 аминокислот в последовательности оказались одинаковыми, консервативными (инвариантными), определяющими функции гемоглобинов; некоторые из них находятся вблизи гема, в составе участка связывания с кислородом, другие – в составе неполярной внутренней структуры глобулы.

    2α цепи и 2β цепи-96%

    3.Особенности строения, развития и метаболизма эритроцита.

    Эритроциты - высокоспециализированные клетки, которые переносят кислород от лёгких к тканям и диоксид углерода, образующийся при метаболизме, из тканей к альвеолам лёгких. Транспорт О2 и СО2 в этих клетках осуществляет гемоглобин, составляющий 95% их сухого остатка.

    Дифференцировка эритроцитов-эритроцит готовится стать собой 2 недели.

    Интерлейкин-3 синтезируется Т-лимфоцитами, а также клетками костного мозга. Это низкомолекулярный белок группы цитокинов - регуляторов роста и дифференцировки клеток.

    Дальнейшую пролиферацию и дифференцировку унипотентной клетки эритроидного ряда регулирует синтезирующийся в почках гормон эритропоэтин .

    В процессе дифференцировки на стадии эритробласта происходят интенсивный синтез гемоглобина, конденсация хроматина, уменьшение размера ядра и его удаление. Образующийся ретикулоцит ещё содержит глобиновую мРНК и активно синтезирует гемоглобин. Циркулирующие в крови ретикулоциты лишаются рибосом, ЭР, митохондрий и в течение двух суток превращаются в эритроциты.

    Строение. Строение спектрина (А), околомембранного белкового комплекса (Б) и цитоскелета эритроцитов (В). Каждый димер спектрина состоит из двух антипараллельных, нековалентносвязанных между собой α- и β-полипептидных цепей (А). Белок полосы 4.1 образует со спетрином и актином "узловой комплекс", который посредством белка полосы 4.1 связывается с цитоплазматическим доменом гликофорина. Анкирин соединяет спектрин с основным интегральным белком плазматической мембраны - белком полосы 3 (Б). На цитоплазматической поверхности мембраны эритроцита имеется гибкая сетеобразная структура, состоящая из белков и обеспечивающая пластичность эритроцита при прохождении им через мелкие капилляры (В).

    Важненько:Интегральный гликопротеин гликофорин присутствует только в плазматической мембране эритроцитов. К N-концевой части белка, расположенной на наружной поверхности мембраны, присоединено около 20 олигосахаридных цепей. Олигосахариды гликофорина - антигенные детерминанты системы групп крови АВО .

    Спектрин - периферический мембранный белок, нековалентно связанный с цитоплазматической поверхностью липидного бислоя мембраны,является основным белком цитоскелета эритроцитов . Спектрин состоит из α- и β-полипептидных цепей, имеющих доменное строение; α- и β-цепи димера расположены антипараллельно, перекручены друг с другом и нековалентно взаимодействуют во многих точках. Спектрин может прикрепляться к мембране и с помощью белка анкирина . Этот крупный белок соединяется с β-цепью спектрина и цитоплазматическим доменом интегрального белка мембраны - белка полосы 3(белок-переносчик ионов С1- и НСО3- через плазматическую мембрану эритроцитов по механизму пассивного антипорта ) . Анкирин не только фиксирует спектрин на мембране , но и уменьшает скорость диффузии белка полосы 3 в липидном слое.

    Метаболизм

    Метаболизм глюкозы

    Эритроциты лишены митохондрий, поэтому в качестве энергетического материала они могут использовать только глюкозу. Глюкоза поступает в эритроциты путём облегчённой диффузии с помощью ГЛЮТ-2. Около 90% поступающей глюкозы используется в анаэробном гликолизе, а остальные 10% - в пентозофосфатном пути.

    Важная особенность анаэробного гликолиза в эритроцитах по сравнению с другими клетками - присутствие в них фермента бисфосфоглицератмутазы. Бисфосфоглицератмутаза катализирует образование 2,3-бисфосфоглицерата(служит важным аллостерическим регулятором связывания кислорода гемоглобином) из 1,3-бисфосфоглицерата..

    Глюкоза в эритроцитах используется и в пентозофосфатном пути, окислительный этап которого обеспечивает образование кофермента NADPH, необходимого для восстановления глутатиона.

    Обезвреживание кислорода

    Большое содержание кислорода в эритроцитах определяет высокую скорость образования супероксидного анион-радикала (О2-), пероксида водорода (Н2О2) и гидроксил радикала (ОН.). Эритроциты содержат ферментативную систему, предотвращающую токсическое действие активных форм кислорода и разрушение мембран эритроцитов. Постоянный источник активных форм кислорода в эритроцитах - неферментативное окисление гемоглобина в метгемоглобин:

    Метгемоглобинредуктазная сисгема состоит из цитохрома B5 и флавопротеина цитохром B5 редуктазы , донором водорода для которой служит NADH, образующийся в глицеральдегиддегидрогеназной реакции гликолиза

    Цитохром B5 восстанавливает Fe3+ метгемог-лобина в Fe2+:

    Hb-Fe3+ + цит. b5 восст. → HbFe2+ + цит. b5 ок. .

    Цит. B5 ок + NADH → цит. B5 восст. + NAD+.

    Супероксидный анион с помощью фермента супероксидцисмутазы превращается в пероксид водорода:

    O2- + O2- + Н+ → H2О2 + O2 .

    Пероксид водорода разрушается каталазой и содержащим селен ферментом глутатионпероксидазой. Донором водорода в этой реакции служит глутатион - трипептид глутамилцистеинилглицин (GSH) (см. раздел 12).

    2Н2О → 2Н2О + О2; 2GSH + 2Н2О2 → GSSG + 2Н2О.

    Окисленный глутатион (GSSG) восстанавливается NADPH-зависимой глутатионредуктазой. Восстановление NADP для этой реакции обеспечивают окислительные реакции пентозофосфатного пути (см. раздел 7).

    Кровеносная система выполняет транспортную функцию в организме всех теплокровных животных, доставляя к тканям питательные вещества и кислород. Транспортировка кислорода и углекислого газа осуществляется благодаря красным тельцам крови, в состав которых входит важное вещество - гемоглобин. В этой статье мы рассмотрим виды и соединения гемоглобина.

    Что такое гемоглобин

    Гемоглобин - это компонент эритроцитов, относящийся к группе белков. Состоит из 96% белкового вещества глобина и 4% вещества с атомом - гем. В 1 клетке эритроцита его содержится порядка 280 млн молекул, что и формирует красный цвет крови.

    Главное свойство гемоглобина - это способность железа присоединять и отщеплять газы, формируя перемещение кислорода из лёгких к тканям и углекислого газа от тканей к лёгким. Таким образом, его роль в процессе газообмена в организме незаменима.

    Структура и виды гемоглобина крови человека

    На разных стадиях развития человеческого организма состав гемоглобина отличается по структуре полипептидных цепей. В зависимости от того, какие полипептидные цепи содержит гемоглобиновая структура, виды гемоглобина у человека следующие:

    Патологические виды гемоглобина

    В ряде случаев под влиянием генетических дефектов возникает аномальный синтез гемоглобиновых клеток. Патологические виды гемоглобина от физиологических отличаются составом полипептидных связей, а точнее, их мутацией.

    В результате мутации ДНК, синтез компонентов эритроцитов осуществляется не с глутаминовой, а валиновой аминокислотой. Эта «кадровая» замена приводит к образованию белковой структуры типа 2 с «липким» участком на поверхности, способным присваивать структуры себе подобные. Таким образом, происходит полимеризация HbS-молекул и, как следствие, оседание тяжёлых и плохо транспортируемых эритроцитов в кровеносных сосудах. Данное отклонение носит название

    Нормальные значения содержания гемоглобина в крови, не считающиеся патологическим отклонением:

    • У мужчин - 130-150 г/л.
    • У женщин - 120-140 г/л.
    • У детей до года 100-140 г/л, причём в первый месяц эти значения могут достигать до 220 г/л за счёт повышенной концентрации фетального гемоглобина. У детей с года до 6 лет - 110-145 г/л, а с 6 года жизни - 115-150 г/л вне зависимости от пола ребёнка.
    • При беременности наблюдается снижение концентрация HbA до 110 г/л, что однако не считается анемией.
    • У пожилых людей нормой считается тенденция понижения на 5 единиц от заявленной нормы в зависимости от пола пациента.

    По отличается и состав крови, содержащей одновременно разные виды гемоглобина. Так, например, у взрослого человека естественным соотношением является 99% HbA и до 1% HbF. У детей до года процент HbF значительно выше, чем у взрослых, что объясняется постепенным распадом изначально имеющейся формы фетального гемоглобина.

    Физиологические формы

    Поскольку дыхательный красный пигмент непрерывно участвует в газообменных процессах в организме, то его главным свойством является способность образовывать соединения с молекулами различных газов. В результате подобных реакций создаются физиологические виды гемоглобина, которые считаются нормальным явлением.


    Патологические соединения

    Эритроциты могут присоединять не только газы, участвующие в дыхательном процессе, но и другие, образуя патологические виды гемоглобина, представляющие опасность для человеческого здоровья и даже жизни. Эти соединения обладают низкой степенью распада, поэтому приводят к кислородному голоданию тканей и серьёзным нарушениям дыхательного процесса.

    Диагностика гемоглобина

    Для выявления концентрации глобиновых дыхательных структур в крови человека проводятся качественные и количественные виды анализов. Гемоглобин также исследуется на количество содержания в нём ионов железа.

    Основным количественным методом определения концентрации гемоглобина сегодня является колориметрический анализ. Он представляет собой исследование цветовой насыщенности биологического материала при добавлении к нему специального реактива.

    Качественные методы включают исследование крови на содержание в нём соотношения типов HbA и HbF. Также к относится определение количества содержания в крови молекул гликолизированного гемоглобина (соединения с углеродами) - метод используется для диагностики сахарного диабета.

    Отклонение концентрации гемоглобина от нормы

    Баланс HbA может варьировать как ниже, так и выше нормы. В любом случае это приводит к негативным последствиям. При понижении HbA ниже установленной нормы возникает патологический синдром, который носит название "железодефицитная анемия". Выражается вялостью, упадком сил, невнимательностью. Негативно влияет на нервную систему, особенно опасен в детском возрасте, так как часто является причиной отставания в психо-моторном развитии.

    Повышенный гемоглобин не является отдельным заболеванием, это, скорее, синдром, свидетельствующий о различных патологиях, таких как сахарный диабет, лёгочная недостаточность, порок сердца, заболевания почек, переизбыток фолиевой кислоты или витаминов группы В, онкология и др.

    В состав молекулы гемоглобина входят 4 одинаковые гемовые группы. Гем представляет собой порфирин, содержащий центрально расположенный ион Fe 2+ . Является производным порфина, который представляет собой конденсированную систему из 4 пирролов, соединенных между собой метиновыми мостиками (-СН=). В зависимости от строения заместителей в порфине различают несколько разновидностей гемов.

      гем IX – наиболее распространенная разновидность гема. Производным порфина в нем является протопорфирин IX (1,3,5,8 – тетраметил-2,4 – дивинил – 6, 7 – дипропионовокислый порфин);

      гем а (формилпорфирин). Гем а вместо метильной группы содержит формильный остаток в восьмом положении (-СНО) и вместо одной винильной группы (во втором положении) изопреноидную цепь. Гем а входит в состав цитохромоксидазы;

      гем с, в котором с винильными (-СН=СН 2) группами в положениях 2 и 4 связаны остатки цистеина. Входит в состав цитохрома С;

      гем  представляет собой железодигидропорфирин 4.

    Гем является простетической группой не только гемоглобина и его производных, но и миоглобина, каталазы, пероксидазы, цитохромов, фермента триптофанпироллазы, катализируещего окисление троптофана в формилкинуренин.

    Координационное число для атомов железа равно 6. В геме железо связано двумя ковалентными связями с атомами азота двух пиррольных колец и двумя координационными связями с атомами азота остальных пиррольных колец. Пятая и шестая координационные связи железа распределяются по-разному, в зависимости от того в состав какой белковой молекулы входит гем, в зависимости от её функций. Так, например, в цитохромах 5 и 6 координационные связи железа соединены с остатками гистидина и метионина. Такое расположение гема в цитохромах, необходимо для выполнения их специфической функции – переноса электронов в дыхательной цепи. Переходы Fe 3+ + е= Fe 2+ ; Fe 2+ -е= Fe 3+ создают возможность перебрасывать электроны от одного цитохрома к другому.

    Рассмотрим подробнее расположение гема в составе гемоглобина (миоглобина). Гем расположен в щели между спиралями Е и F; его полярные пропионатные группы ориентированы к поверхности глобулы, а остальная часть находится внутри структуры и окружена не полярными остатками, за исключением His F8 и His F7. Пятое координационное положение атома железа занято атомом азота гетероциклического кольца проксимального гистидина His F8. Дистальный гистидин (His F7) расположен по другую сторону гемого кольца, почти напротив His F8, но шестое координационное положение атома железа остаётся свободным. Из двух не использованных координационных связей одна идет на соединение с белком, а вторая – на соединение с различными лигандами (физиологическими – кислород, вода и чужеродными – диоксид углерода, цианид и т.д.).

    Производные гемоглобина

    Гемоглобин взаимодействует с различными лигандами, для этого предназначена шестая координационная связь железа в геме. К производными гемоглобина относят:

      оксигемоглобин HbО 2 – соединение молекулярного кислорода с гемоглобином. Чтобы подчеркнуть тот факт, что валентность железа при этом связывании не меняется, реакцию называют не окислением, а оксигенацией; обратный процесс называется дезоксигенацией. Когда хотят специально отметить, что гемоглобин не связан с кислородом, его называют дезоксигемоглобином;

      карбоксигемоглобин HbСО. Валентность железа в результате присоединения угарного газа (моноксида углерода – СО) также остается II. СО связывается с гемом примерно в двести раз прочнее, чем связь гем- О 2 . Не большая часть молекул гемоглобина (1%) в нормальных условиях связывает СО. У курильщиков же к вечеру эта величина достигает 20%. При отравлении монооксидом углерода наступает смерть от удушья, недостаточного снабжения тканей кислородом.

      метгемоглобин (HbОН). Он не связывает молекулярный кислород. Атом железа в его молекуле находится в степени окисления 3+. Метгемоглобин образуется при воздействии на гемоглобин окислителей (оксидов азота, метиленового синего, хлоратов). В крови человека метгемоглобин находится в незначительных количествах, но при некоторых заболеваниях (например, нарушение синтеза ГЛ-6-фосфатДГ), либо при отравлении окислителями его содержание возрастает, что может быть причиной летального исхода, так как метгемоглобин не способен к переносу кислорода от легких к тканям;

      цианметгемоглобин (HbСN) – метгемоглобин оказывает и положительное действие. Он связывает СN - с образованием цианметгемоглобина и спасает организм от смертельного действия цианидов. Поэтому для лечения отравлений цианидами применяют метгемоглобинообразователи (тот же нитрит Na);

      карбгемоглобин образуется, когда гемоглобин связывается с СО 2 . Однако СО 2 присоединяется не к гему, а к NН 2 – группам глобина:

    HbNH 2 + CO 2 = HbNHCOO - + H +

    Причем дезоксигемоглобин связывает больше СО 2 , чем оксигемоглобин. Образование карбгемоглобина используется для выведения СО 2 из тканей к легким. Этим путем выводится 10-15% СО 2 .

    Вопрос 7. Механизм насыщения гемоглобина кислородом

    За счет шестой координационной связи к атому железа присоединяется молекула кислорода с образованием оксигемоглобина. Пиррольные кольца гема расположены в одной плоскости в то время как атом железа несколько выступает из этой плоскости. Присоединение кислорода «выпрямляет» молекулу гема: железо перемещается в плоскость пиррольных колец на 0,06 нм, так как диаметр координационной сферы атома железа уменьшается. Гемоглобин связывает 4 молекулы кислорода (по одной молекуле на гем в каждой субъединице). Оксигенерирование сопровождается значительными конформационными изменениями в гемоглобине. Перемещаясь в плоскость пиррольных колец, Fe, соединенное в 5 координационном положении с остатком HisF8 «тянет» пептидную цепь на себя. Происходит изменение конформации этой цепи и связанных с ней других полипептидных цепей, поскольку один протомер соединен многими связями с другими протомерами. Это явление называют коопреативностью изменения конформации протомеров. Изменения конформации таковы, что первоначальное связывание О 2 с одной субъединицей ускоряет связывание молекул кислорода с отстальными субъединицами. Это явление известно как гомотропный положительный кооперативный эффект (гомотропный, потому что участвует только кислород). Именно это обуславливает сигмовидный характер кривой насыщения гемоглобина кислородом. Четвертая молекула кислорода присоединяется к гемоглобину в 300 раз легче, чем первая молекула. Чтобы составить себе более ясное представление об этом механизме, целесообразно рассматривать структуру гемоглобина в виде двух гетеродимеров, образованных  и  - субъединицами:  1  1 и  2  2 . Незначительный сдвиг атома железа приводит к тому, что одна /  пара субъединиц, поворачивается относительно другой /  - пары. При этом между субъединицами разрушаются нековалентные связи, обусловленные электростатическими взаимодействиями. Один набор связей между димерами замещается на другой, происходит их относительная ротация.

    Четвертичная структура частично оксигенерированного гемоглобина описывается как Т-состояние (от англ. Taut –напряжение), полностью оксигенерированному гемоглобину (HbО 2) отвечает R – состояние (relaxed- релаксирование). Состояние характеризуется меньшим сродством к кислороду, вероятности перехода из Т- формы в R-форму повышается по мере последовательного оксигенерирования каждой из 4 гемогрупп. Солевые мостики (нековалентные связи) по мере присоединения кислорода разрушаются, увеличивая вероятность перехода из Т – формы в R- форму (состояние высокого сродства).

    Билет 92

    К группе гемопротеидов относятся гемоглобин и его производные, миоглобин и ферменты – цитохромная система, каталаза и пероксидаза.

    Все хромопротеиды содержат различные по составу и структуре белки. Небелковый компонент обладает структурным сходством.

    Строение гемоглобина.

    В молекуле гемоглобина белковый компонент представлен белком глобином, небелковый компонент – гем.

    Глобин состоит из 4 субъединиц 2 и 2. Каждая -цепь содержит по 141 аминокислотному остатку, а - по 146.

    Внутри каждой субъединицы имеется гидрофобный «карман», в котором располагается гем.

    Гем представляет собой плоскую молекулу, содержащую 4 пиррольных цикла и соединенный с ними атом железа:

    Гем соединяется с белковой частью (глобином) гидрофобными связями между пиррольными циклами и гидрофобными радикалами аминокислот. Между атомом железа и имидазольным кольцом одного из остатков гистидина в глобине имеется координационная связь. За счет еще одной координационной связи к атому железа может присоединяться молекула кислорода с образованием оксигемоглобина.

    Пиррольные кольца гема расположены в одной плоскости, а атом железа выступает из этой плоскости. Присоединение кислорода «выпрямляет» молекулу гема: железо перемещается в плоскость пиррольных колец и это вызывает изменение конформации белка. В молекуле гемоглобина имеется 4 протомера, каждый из которых содержит гем и может присоединять кислород. Присоединение первой молекулы кислорода изменяет конформацию протомера. Изменение конформации одного протомера изменяет конформацию остальных протомеров. Изменение конформации протомеров облегчает присоединение остальных молекул кислорода. Это явление называется кооперативным действием. Сродство гемоглобина к четвертой молекуле О 2 примерно в 300 раз больше, чем к первой.

    Функция гемоглобина.

    Состоит в связывании и переносе кислорода от легких к тканям. Гемоглобин, связанный кислородом, называется оксигемоглобином.

    Производные гемоглобина.

    Молекула гемоглобина имеет большое сродство к оксиду углерода (II ) СО. Это карбоксигемоглобин. Сродство СО к гемоглобину примерно в 300 раз выше, чем к кислороду. Это свидетельствует о высокой токсичности угарного газа, поэтому при отравлении СО необходимо, пострадавшего вынести на воздух, чтобы увеличить поступление кислорода.

    Гемоглобин связывает также СО 2 с образованием карбгемоглобина.

    Типы гемоглобинов.

    Различают физиологические и аномальные гемоглобины.

    Физиологические гемоглобины образуются на разных этапах нормального развития организма, а аномальные – вседствие нарушений последовательности аминокислот в глобине.

    Физиологические типы гемоглобина.

    1. Примитивный – HbP (относятся гемоглобины, называемые Говер 1 и Говер 2)
    2. Фетальный гемоглобин HbF (гемоглобин плода).
    3. Гемоглобин взрослых: Hb А 1 , Hb А 2 , Hb А 3 .

    Hb Р появляется на ранних стадиях развития эмбриона. Примитивные гемоглобины заменяются на HbF . На поздних стадиях развития плода появляются гемоглобины взрослых – Hb А 1 , Hb А 2 .

    В крови взрослого человека примерно 95-96% Hb А 1 , 2-3% Hb А 3 , 0,1-0,2% HbF .

    Гемоглобин А 1 содержит по 2 и цепи. Гемоглобин А 2 – по 2 и -цепи. Гемоглобин F – по 2 и -цепи. Гемоглобин Говер 1 содержит 4 цепи, Говер 2 – 2 и 2 цепи по мере созревания плода -цепи заменяются -цепями.

    Аномальные типы гемоглобина

    В крови человека открыто около 150 типов мутантных гемоглобинов. Аномальные гемоглобины различаются по форме, химическому составу, величине заряда. Выделены аномальные гемоглобины при помощи методов электрофореза и хроматографии. Передающиеся по наследству изменения – результат мутации единственного триплета, который приводит к замене одной аминокислоты на другую (с резко отличающимися свойствами – пример серповидноклеточная анемия – глу заменен на вал).

    Патология обмена гемоглобина.

    Болезни гемоглобинов (их около 200) называют гемоглобинозами.

    Гемоглобинозы делят на:

    1. Гемоглобинопатии – в основе лежат наследственные изменения структуры какой-либо цепи нормального гемоглобина («молекулярные болезни»).
    2. Талассемии – нарушение синтеза какой-либо цепи гемоглобина.
    3. Железодефицитные анемии.

    Классическим примером наследственной гемоглобинпатии является серповидноклеточная анемия. Глу в 6-м положении в -цепи заменен на вал. Эритроциты в условиях низкого парциального давления кислорода принимают форму серпа. Такой гемоглобин после отдачи кислорода превращается в плохо растворимую форму и начинает выпадать в осадок в виде веретенообразных кристаллоидов, которые деформируют клетку и вызывают массивный гемолиз.

    Талассемии – генетически обусловленной нарушение синтеза одной из нормальных цепей гемоглобина. Угнетение синтеза -цепей вызывает развитие -талассемии, угнетение синтеза -цепей - -талассемия. При -талассемии появляется до 15% HbA 2 , повышается до 15-60% содержание фетального гемоглобина. Болезнь характеризуется гиперплазией и разрушением костного мозга, поражением печени, деформацией черепа и тяжелой гемолитической анемией. Эритроциты имеют мишеневидную форму. Механизм изменения формы эритроцитов не выяснен. Название связано с тем, что возникает у людей, живущих на побережье Средиземного моря.

    Порфирии.

    Порфирии – группа заболеваний с наследственной предрасположенностью, возникающих в результате блокирования начальных стадий синтеза гема и сопровождающихся увеличением содержащихся порфиринов в организме.

    Глицин Сукцинил-КоА

    Аминолевуленовая кислота

    порфобилиноген

    уропорфириноген

    копропорфириноген

    протопорфирин IX

    Феррохелатаза

    Гем

    Блок – 1 – острая перемеживающая порфирия. Накапливается -АМК и порфобилиноген

    Блок – 2 – приводит к накоплению всех предшествующих продуктов. Молекулярный механизм неизвестен.

    Болк – 3 – эритропоэтическая протопорфирия связана с отсутствием фермента феррохелатазы, каторая присоединяет к молекуле протопорфирина IX Fe 2+ .

    Распад гема

    За сутки в организме распадается около 9 г гемопротеидов. Период жизни эритроцитов 120 дней, разрушаются они в кровеносном русле или в селезенке. Гемоглобин связывается с гаптоглобином и в виде комплекса гаптоглобин-гемоглобин поступает в клетки ретикулоэндотелиальной системы селезенки. Комплекс гаптоглобин-гемоглобин распадается и гаптоглобин переходит в кровь, а гемоглобин окисляется в метгемоглобин (Fe 3+ ).

    В РЭС селезенки гемоглобин под действием гемоксигеназы превращается в вердоглобин. Вердоглобин теряет Fe , которое связывается трансферином и доставляется кровью в костный мозг. Вердоглобин отдает белок глобин и превращается в биливердин. При восстановлении биливердина НАДФ Н 2 образуется билирубин.

    Билирубин – плохо растворимое соединение и в крови связывается с альбумином. В виде комплекса альбумин-билирубин идет транспорт билирубина кровью в клетки печени. В печени билирубин соединяется с глюкуроновой кислотой с образованием моно (20%) и диклюкуронидов (80%), они хорошо растворимы в воде. Этот вид билирубина называется конъюгированным билирубином (связан с глюкуроновой кислотой), а также называется связанным прямым, т.к. может быть прямо обнаружен с помощью реактива Эрлиха.

    Билирубинглюкурониды в незначительных количествах диффундируют в кровеносный капилляр. В плазме крови присутствуют 2 формы билирубина: неконъюгированный (непрямой, свободный) и конъюгированный (прямой, связанный) – 25% от общего билирубина. Билирубинглюкурониды с желчью поступают в кишечник, где от них отщепляется глюкуроновая кислота и вновь образуется неконъюгированный билирубин. В тонком кишечнике небольшая часть билирубина может всосаться и через портальную вену вновь поступать в печень. Остальной билирубин подвергается действию кишечных бактерий и в тонком кишечнике билирубин превращается в уробилиноген. Уробилиноген всасывается в тонком кишечнике и через воротную вену поступает в печень, где уробилиноген разрушается до моно- дипирролов.

    Не разрушенный уробилиноген вновь с желчью поступает в кишечник и восстанавливается до стеркобилиногена (бесцветен). Стеркобилиноген окисляется до стеркобилина и выделяется с фекалиями. Небольшое количество стеркобилиногена поступает в почки, затем окисляется до стеркобилина и выделяется с мочой.

    В норме содержание общего билирубина в сыворотке крови составляется 8-20 мкмоль/л.

    Видовые различия гемоглобина обусловлены химическим составом и строением глобина. Гемоглобины представляют собой тетрамерные белки, молекулы которых образованы различными типами полипептидных цепей, Глобин состоит из 4 полипептидных цепей. На сегодняшний день известно 5 полипептидных цепей, формирующих молекулу гемоглобина (альфа, бетта, гамма, дельта, эпсилон) при скрещении цепей образуются различные физиологические гемоглобины.

    Общая формула глобина X2Y2, где Х – альфа цепь,Y одна из оставшихся 4 - х.

    В состав молекулы входят по 2 полипептидные цепи двух разных типов, каждая из которых оборачивает 1 гем гемоглобина. Гемоглобины различных видов различаются вторичной, третичной и четвертичной структурами, и индивидуальные свойства гемоглобинов неразрывно связаны с их структурами. Известно, что гемоглобин человека состоит из двух равных половин, каждая из которых образована двумя одинаковыми полипептидными цепями. У человека обнаружены гемоглобины различных типов, которые отличаются по химическому строению. отличающийся от HbA вторичной, третичной и четвертичной структурами, что обусловливает их различия: по спектральным характеристикам, электрофоретической подвижности, устойчивости к тепловой денатурации и др. В крови новорожденного ребенка содержится ~ 80% HbF, который к концу первого года жизни почти целиком заменяется на HbA (в крови взрослого человека содержится до ~ 1,5% HbF от общего количества гемоглобина).

    Физиологические гемоглобины:

    Первый гемоглобин – зародышевый в 3 месяца сменяется на плодный или фетальный гемоглобин НвF (он состоит из альфа2 + гамма2 цепей - a 2 g 2), который присутствует в период эмбриогенеза, и полностью замещается гемоглобином взрослого к концу 1 – го года жизни. Гемоглобин взрослого – А1 и А2, начинают синтезироваться в плодный период и после 1- го года жизни процент HbА1 составляет 97 – 98% - основной компонент эритроцитов взрослого, он состоит из альфа2 + бетта2 цепей (a 2 b 2).

    2-3% - гемоглобин А2, процент НвF к концу 1-го года – не более 1%.

    Фетальный гемоглобин по сравнению с гемоглобином взрослого обладает более высоким сродством к кислороду, т.к. фетальный гемоглобин связывает 2,3-дифосфоглицерат труднее, чем НвА.

    Растворы гемоглобина окрашены в темно-красный цвет и имеют характерные спектры поглощения в ультрафиолетовой и видимой областях спектра. Изоэлектрическая точка гемоглобина ~ 7. В кислой и щелочной среде гемоглобин легко денатурируется, скорость денатурации различна у различных видов гемоглобинов.

    Синтез гемоглобина

    Функция гемоглобина требует наличия обоих компонентов гема и глобина. Синтез гемоглобина осуществляется 2 путями – синтез гема и глобина. Затем эти составные объединяются и составляют молекулу гемоглобина. Синтез гемоглобина начинается в митохондриях с конденсации молекул: глицина и сукцинил – КоА, конечным продуктом конденсации этих молекул является дельта – аминолевулиновая кислота, далее конденсация 2- х молекул аминолевулиновой кислоты образует пироловое кольцо, которое подвергаясь действию аминолевулинатдегидрогеназы переходит в порфобилиноген, конденсация 4 – х колец которого даёт образование уропорфириногена, эта реакция катализируется комплексом 2 – х ферментов. Уропорфириногенсинтетаза –I катализирует конденсацию и дезаминирование порфобилиногена в уропорфириноген I, эта реакция активна при некоторых видах порфирий. В нормальных условиях работает, почти исключительно, уропорфириноген-III-косинтетаза при этом образуется уропорфириноген III, который при декарбоксилировании образует копропорфириноген. Копропорфириноген подвергаясь процессам декарбосилирования превращается в протопорфириноген III, далее под воздействием оксидазы образуется протопорфирин 9. Завершающей стадией является включение в протопорфирин 2 – х валентного железа, эта реакция катализируется митохондриальным ферментом гем – синтетаза или ферро-хелатаза (однако эта реакция хорошо идёт и без ферментов). Биосинтез гемма идёт в большинстве тканей млекопитающих, за исключением зрелых эритроцитов, которые не содержат митохондрий. Преимущественныи местом синтеза является печень, т.к. именно в печени протекает основной метаболизм порфиринов. Все порфобилиногены бесцветны, тогда как порфирины – имеют окраску.

    Регуляция синтеза гема

    Скорость – лимитирующей реакцией синтеза гема является конденсация сукцинил-КоА и глицина, приводящая к образованию амино – левуленовой кислоты. Т.О. основным регуляторным ферментом является АЛК - синтетаза.

    1. Гем является аллостерическим ингибитором АЛК – синтетазы, по принципу обратной связи.

    2. Гем является корепрессором синтеза самого фермента АЛК - синтетазы.

    3. Железо регулирует синтез этого фермента на этапе трансляции.

    Механизм: На матричной РНК, кодирующей АЛК – синтетазу имеется определённая последовательность нуклеотидов, которая называется железо – чувствительным элементом. Этот участок связывается с регуляторным железо-связывающим белком, который ингибирует процесс трансляции. При высоких концентрациях железа в клетках, оно образует комплекс с регуляторным железосвязывающим белком и снижает сродство этого белка к железочувствительному элементу мРНК, тем самым, активируя трансляцию АЛК - синтетазы. При низких концентрациях железо не связывается с регуляторным белком и трансляция тормозится.

    На индукцию АЛК – синтетазы в печени оказывают действие и другие факторы: при приёме лекарственных средств, метаболизм которых происходит в печени при участии цитохрома Р450, возрастает потребность в геме за счёт повышенного расхода, соответственно активируется АЛК – синтетаза. Глюкоза может тормозить индукцию АЛК – синтетазы. Гипоксия способствует повышению активности АЛК – синтетазы в клетках костного мозга, а в печени не изменяет активность этого фермента.

    КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «api-clinic.ru» — Центр естественной медицины